Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 45 issue 10 (october 2022) : 1247-1251

​​An Agrobacterium rhizogenes Strain R1000-mediated Efficient Hairy Root Transformation Protocol for Common Bean

Hai Lan Li, Ping Ping Fang, Yan Nan Hu, Xiao Fang Li, Wen Jun Xia, Pei Xu
1Key Lab of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China.
  • Submitted25-01-2022|

  • Accepted02-06-2022|

  • First Online 15-07-2022|

  • doi 10.18805/LRF-680

Cite article:- Li Lan Hai, Fang Ping Ping, Hu Nan Yan, Li Fang Xiao, Xia Jun Wen, Xu Pei (2022). ​​An Agrobacterium rhizogenes Strain R1000-mediated Efficient Hairy Root Transformation Protocol for Common Bean. Legume Research. 45(10): 1247-1251. doi: 10.18805/LRF-680.
Background: Common bean (Phaseolus vulgaris L.) is a globally important grain and vegetable legume crop, providing a substantial portion of the diet protein and minerals for many people in the developing world. However, the genetic studies and improvement on this crop has long been impeded by its recalcitrance to Agrobacterium-mediated whole plant genetic transformation. Established Agrobacterium rhizogenes-based hairy root transformation in common bean heavily relies on the strain K599.
Methods: In order to develop an efficient alternative protocol for hair transformation in common bean, the efficiency of Agrobacterium rhizogenes strain R1000 in inducing hairy roots from 6-day-old seedlings with root below cotyledons excised by the soaking and smearing method were tested. The binary plasmid pBI121 with the reporter gene GUS (pBI121-GUS) or eGFP (pBI121-eGFP) driven by the constitutive promoter was used for transformation and rapid identification of the transgenic hairy roots.   
Result: We established a strain R1000-based system for the induction of hairy roots in common bean. The plant receptor genotypes and infection methods were optimized, which led to a high transformation rate of hairy roots up to 60%. This method therefore provides a useful alternative means for functional genomic studies in common bean.

  1. Aggarwal, P.R., Nag, P., Choudhary, P., Chakraborty, N., Chakraborty, S. (2018). Genotype-independent Agrobacterium rhizogenes-mediated root transformation of chickpea: A rapid and efficient method for reverse genetics studies. Plant Methods. 14: 55.

  2. Asfaw, A. and Blair, M.W. (2014). Quantification of drought tolerance in Ethiopian common bean varieties. Agricultural Sciences. 5(2): 124-139.

  3. Ali, M., Kiani, B.H., Mannan, A., Ismail, T., Mirza, B. (2012). Enhanced production of artemisinin by hairy root cultures of Artemisia dubia. Journal of Medicinal Plants Research. 6: 1619-1622.

  4. Bonfim, K., Faria, J.C., Nogueira, E.O.P.L., Mendes, E.A., Aragão, F.J.L. (2007). Rnai-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Molecular plant-microbe interactions. 20(6): 717-726.

  5. Carrasco-Castilla, J., Ortega-Ortega, Y., Jáuregui-Zúñiga, D., Juárez- Verdayes, M.A., Arthikala, M.K., Monroy-Morales, E., Nava, N., Santana, O., Sanchez-Lopez, R., Quinto, C. (2018). Down-regulation of a Phaseolus vulgaris annexin impairs rhizobial infection and nodulation. Environmental and Experimental Botany. 153: 108-119.

  6. Chilton, M.D., Tepfer, D.A., Petit, A., David, C., Casse-Delbart, F., Tempé, J. (1982). Agrobacterium rhizogenes inserts T- DNA into the genomes of the host plant root cells. Nature. 295(5848): 432-434.

  7. Datta, A. (2013). Genetic engineering for improving quality and productivity of crops. Agriculture and Food Security. 2(1): 15.

  8. Estrada-Navarrete, G., Alvarado-Affantranger, X., Olivares, J.E., Guillén, G., Díaz-Camino, C., Campos, F., Quinto, C., Gresshoff, P.M., Sanchez, F. (2007). Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes. Nature Protocols. 2(7): 1819-1824.

  9. Jefferson, R.A. (2007). Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter. 5: 387-405.

  10. Khandual, S. (2014). Rapid, efficient and high-performance protocol for Agrobacterium rhizogenes-mediated hairy root transformation of the common bean Phaseolus vulgaris. Journal of Advances in Biotecnology. 5(4): 333-339.

  11. Malik, K.A. and Saxena, P.K. (1991). Regeneration in Phaseolus vulgaris L. promotive role of N6-benzylaminopurine in cultures from juvenile leaves. Planta. 184(1): 148-150.

  12. Mukeshimana, G., Ma, Y., Walworth, A.E., Song, G.Q., Kelly, J.D. (2013). Factors influencing regeneration and Agrobacterium tumefaciens-mediated transformation of common bean (Phaseolus vulgaris L.). Plant Biotechnology Reports. 7(1): 59-70.

  13. Nanjareddy, K., Arthikala, M.K., Aguirre, A.L., Gómez, B.M., Lara, M. (2017). Plant promoter analysis: identification and characterization of root nodule specific promoter in the common bean. Journal of Visualized Experiments. (130): 56140.

  14. Partap, M. and Godara, S.L. (2022). Occurrence and distribution of dry root rot of chickpea caused by Macrophomina phaseolina (tassi) goid. in arid region of Rajasthan. Legume Research. 45(5): 639-645.

  15. Priyanka, Meena, A.K., Mathur, A.C., Bagri, R.K., Sharma, R.S. (2022). Current status and prospect of web blight of cowpea: A review. Legume Research. 45(5): 529-535.

  16. Singh, J. and Tiwari, K.N. (2012). in vitro plant regeneration from decapitated embryonic axes of Clitoria ternatea L. an important medicinal plant. Industrial Crops and Products. 35(1): 224-229.

  17. Stagnari, F., Maggio, A., Galieni, A., Pisante, M. (2017). Multiple benefits of legumes for agriculture sustainability: An overview. Chemical and Biological Technologies in Agriculture. 4(1): 2.

  18. Varshney, R.K., Kudapa, H., Roorkiwal, M., Thudi, M., Pandey, M.K., Saxena, R.K., Chamarthi, S.K., Mohan, S.M., Mallikarjuna, N., Upadhyaya, H., Gaur, P.M., Krishnamurthy, L., Saxena, K.B., Nigam, S.N., Pande, S. (2012). Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. Journal of Biosciences. 37(5): 811-820.

  19. Veena, V. and Taylor, C.G. (2007). Agrobacterium rhizogenes: Recent developments and promising applications .In Vitro Cellular and Developmental Biology Plant. 43(5): 383-403.

  20. Vianna, G., Albino, M. andrade Dias Brito da Cunha, B., Silva, L.l., Rech, E.L. (2004). Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.). Scientia Horticulturae. 99: 371-378.

  21. Xu, B., Wu, R.N., Gao, C.P., Gao, X., Shi, F.L. (2022). Establishment of tissue culture regeneration system for Medicago ruthenica L. cv. ‘Zhilixing’. Legume Research. 45: 162-167.

  22. Yao, Z.F., Liang, C.Y., Zhang, Q., Chen, Z.J., Xiao, B.X., Tian, J., Liao, H. (2014). Spx1 is an important component in the phosphorus signalling network of common bean regulating root growth and phosphorus homeostasis. Journal of Experimental Botany. 65(12): 3299-3310.

Editorial Board

View all (0)