Loading...

Comparative Chloroplast Genome Analysis and Evolutionary Relationships in Some Species of Asclepiadeae, Apocynaceae

DOI: 10.18805/LR-565    | Article Id: LR-565 | Page : 145-151
Citation :- Comparative Chloroplast Genome Analysis and Evolutionary Relationships in Some Species of Asclepiadeae, Apocynaceae.Legume Research.2021.(44):145-151
Abidina Abba, Dhafer Alzahrani, Samaila Yaradua, Enas Albokhari abdin2007@gmail.com
Address : Deparment of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, KSA.
Submitted Date : 3-05-2020
Accepted Date : 26-11-2020

Abstract

Background: Comparative study of the complete chloroplast genomes of some species in the Subtribe Asclepiadeae was conducted to evaluate the variations and similarities between the species and to resolve the phylogenetic relationship within the subtribe. P. tomentosa has been used for medicinal uses in Saudi Arabia, Middle East, Africa and Brazil. It is used often in cosmetics and tanning industries, although it’s very well utilized as a traditional medicine in many civilizations.
Methods: The genomes were compared using Mvista Bioinformatics tools to evaluate the inverted repeats (IR), large single copy (LSC) and small single copy (SSC) regions and also the border junctions were visualized with IR scope to express the expansion and contraction of the circular genome structure. While SSR markers were determined using the Reputer program, the genome map was done using OGDRAW (OrganellarGenomeDRAW).
Result: Observed variations of the Mvista alignments is mainly at the coding regions of the sequences, while IR borders were varied at the SSC region of A. nivea genome; with ycf1 and rps19 due to evolutionary events. The genome sizes of C. procera are 166,010 bp, P. tomentosa 164,213bp, A. nivea 161,592 bp and C. wilfordii 161,180 bp. GC contents of A. nivea, C. wilfordii and P. tomentosa are 38% respectively; while C. procera is the least with 37%.; total SSR markers as well as the circular genome map were presented in this study.

Keywords

Apocynaceae Conservation Phylogenomics Molecular phylogeny SSR Markers

References

  1. Abba, A., Alzahrani, D., Yaradua, S. and Bokhari, E. (2020). Complete plastome genome of Pergularia tomentosa L. (Asclepiadoideae, Apocynaceae). Mitochondrial DNA part B. 5(1): Taylors and Francis. 10.1080/23802359.2019.1710291.
  2. Daniell, H., Lin, C.S., Yu, M. and Chang, W.J. (2016). Chloroplast genomes: diversity, Evolution and applications in genetic engineering. Genome Biology. vol. 17, article 134.
  3. Daniell, H., Wurdack, J.K., Kanagaraj, A., Lee, S.B., Saski, C. and Jansen, R.K. (2008). The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theoritical and Applied Genetics. 116 (5): 723-737. doi: 10.1007/s00122-007-0706-y.
  4. Dierckxsens, N., Mardulyn, V. and Smits A. (2016). NOVOPlasty de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research. 45.
  5. Huang, Y., Liu, X., Cao, D., Chen, G., Li, S., Wang G., Wang J. and Xu, S. (2020). Cross-species Amplification of Common Bean (Phaseolus vulgaris) EST-SSRs within Hyacinth Bean, Pea and Soybean. Legume Research. 1-5, DOI: 10.18805/LR-574.
  6. Jansen, R.K., Raubeson, L.A., Boore J.L. (2005). Methods for obtaining and analyzing whole chloroplast genome sequences, in Molecular Evolution: Producing the Biochemical Data of Methods in Enzymology, Elsevier. pp. 348-384.
  7. Kode, V., Mudd, E.A., Iamtham, S. and Day, A., (2005). The tobacco plastid accD gene is essential and is required for leaf development. Plant Journal. 44: 237
  8. Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Scheierlmacher, C. and Stoye, J. (2001). Reputer: the manifold application of repeat analysis on genomic scale. Nucleic acid Research. 29: 4633-4642 PMID: 11713313.
  9. Lee, S.S., Jeong, W.J., Bae, J.M., Bang, J.W., Liu, J.R. and Harn, C.H. (2004). Characterization of the plastid-encoded carboxyl transferase sub-unit (accD) gene of potato. Molecules and Cells. 17: 422-429.
  10. Lohse, M. Drechsel, O. and Bock, R. (2007). Organellar genome- Draw (OGDRAW): a tool for the easy generation of high quality custom graphical maps of plastid and mitochondrial genomes. Current Genetics. 52: 267-274, Springer
  11. Mayor, C., Brudno, M., Schwartz, J.R.,Poliakov, A., Rubin, E.M., Frazer, K.A., Pachter, L.S. and Dubchak, I. (2000). VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics. 16: 1046-1047.
  12. Nakkaew, A., Chotigeat, W., Eksomtramage, T., Phongdara, A. (2008). Cloning and expression of a plastid-encoded subunit, beta-carboxyltransferase gene (accD) and a nuclear-encoded subunit, biotin carboxylase of acetyl-coa carboxylase from oil palm (Elaeis guineensis jacq.) Plant Sci. 175: 497-504.
  13. Ni, L., Zhao, Z., Xu, H., Chen, S. and Dorje, G. (2016b) Complete chloroplast genome of gentiana straminea (gentianaceae), an endemic species to the Sino-Himalayan subregion. Gene. 577: 281-288.
  14. Park, H., Park, H., Lee, H., Lee, B-H. and Lee, J. (2018). The complete plastome sequence of an antarctic bryophyte Sanionia uncinata (Hedw.) loeske. International Journal of Molecular Sciences. 19(3). DOI: 10.3390/ijms19030709.
  15. Raubeson, L.A., Peery, R., Chumley, T.W., Dziubek, C., Fourcade, H.M., Boore, J.L., Jansen, R.K. (2007). Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nupharadvena and Ranunculus macranthus. BMC Genomics. 8: 174.
  16. Raubeson, L.A. and Jansen, R.K. (2005). Chloroplast Genomes of Plants. In: Diversity and Evolution of Plants Genotypic and Phenotypic Variation in Higher Plants. [R. Henry, (ed.)]. CABI Publishing, Oxfordshire, United Kingdom, pp. 45-68.
  17. Rapini, A. (2012). Taxonomy “under construction”: advances in the systematics of Apocynaceae, with emphasis on the Brazilian Asclepiadoideae. Rodriguésia. 63(1): 075-088. http://rodriguesia.jbrj.gov.br.
  18. Rousseau-Gueutin, M., Huang, X., Higginson, E., Ayliffe, M., Day, A., Timmis, J.N. (2013). Potential functional replacement of the plastidic acetyl-coa carboxylase subunit (accD) gene by recent transfers to the nucleus in some angiosperm lineages. Plant Physiology. 161: 1918-1929. 
  19. Ruhsam, M., Rai, H.S., Mathews, S., Ross, T.G., Graham, S.W and Raubeson, L. A. (2015). Doescomplete plastid genome sequencing improves pecies discrimination and phylogenetic resolution in Araucaria? Molecular Ecology Resource. 15: 1067-1078. doi:10.1111/1755-0998.12375.
  20. Sasaki, Y., Nagano, Y. (2004). Plant acetyl-coa carboxylase: structure, biosynthesis, regulation and gene manipulation for plant breeding. Bioscience Biotechnology and Biochemistry. 68: 1175-1184.
  21. Schmieder, R. and Edwards R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics. 27(6): 863-864.
  22. Wicke, S., Schneeweiss, G.M., dePamphilis, C.W., M¨uller, K.F. and Quandt, D. (2011). The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Molecular Biology. 76(3-5): 273-297.
  23. Wyman, S.K., Jansen, R.K. and Boore, J.L (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 20(17): 3252-3255.
  24. Xiang, B., Li, X., Qian, J., Wang, L., Ma, L., Tian, X. and Wang, Y. (2016). The complete chloroplast genome sequence of the medicinal plant Swertia mussotii using the pacbiors ii platform. Molecules: 21: 1029.
  25. Yaradua S., Alzahrani, D., Albokhary, E. and Abba, A. (2019). Complete chloroplast genome sequence of Justicia flava: Genome Comparative Analysis and Phylogenetic Relationships among Acanthaceae. Hindawi; BioMed Research International Vol. 21, Article ID 4370258, 17 pages https:// doi.org/10.1155/2019/4370258.

Global Footprints