Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 45 issue 10 (october 2022) : 1295-1300

Allelopathic Impacts of an Agroforestry Tree Species (Streblus asper Lour.) on Seed Germination and Seedling Growth of Chickpea

S. Oraon, S. Mondal
1Department of Botany, Visva-Bharati, Santiniketan-731 235, West Bengal, India.
  • Submitted29-05-2021|

  • Accepted30-09-2021|

  • First Online 09-11-2021|

  • doi 10.18805/LR-4679

Cite article:- Oraon S., Mondal S. (2022). Allelopathic Impacts of an Agroforestry Tree Species (Streblus asper Lour.) on Seed Germination and Seedling Growth of Chickpea. Legume Research. 45(10): 1295-1300. doi: 10.18805/LR-4679.
Background: Agroforestry might be a better strategy for sustainable land use and crop production. Allelopathic effect of Streblus asper Lour. (Moraceae) an agroforestry tree species was documented on chickpea (Cicer arietinum L.) seed germination and seedling growth. 
Methods: The present study was conducted to evaluate the allelopathic potentialities of different concentrations (0.125%, 0.25%, 0.5%, 1.0%, 2.5% and 5%) of aqueous leaf extracts of S. asper on seed germination and seedling growth in laboratory based experiments. The allelopathic potentialities were studied based on seed germination, germination rate, root length, shoot length, biomass, seed vigor index etc
Result: The inhibitory effect was more pronounced with the increasing concentrations of aqueous extracts. 5% aqueous leaf extracts showed a maximum inhibitory effect on seed germination, root length, shoot length, dry weight of root and shoot as compared to control. Based on the allelopathic index, concentrations of 5% aqueous extract showed a strong inhibitory effect. Aqueous leaf extracts contain water-soluble allelochemicals which affect the seed germination and seedling growth. The inhibitory allelopathic effect can be taken as serious consideration before plantation of chickpea in an association of this tree species because of its inhibitory effect on seed germination and early stages of development.

  1. Abdul-Baki, A.A. and Anderson, J.D. (1973). Vigor determination in soybean seed by multiple criteria 1. Crop Science. 13: 630-633.

  2. Ahmed, M. and Wardle, D.A. (1994). Allelopathic potential of vegetative and flowering ragwort (Senecio jacobaea L.) plants against associated pasture species. Plant and Soil. 164: 61-68. 

  3. Bari, I.N. and Kato-Noguchi, H. (2017). Phytotoxic effects of Cerbera manghas L. leaf extracts on seedling elongation of four monocot and four dicot test species. Acta Agrobotanica. 70: 1720. 

  4. Chiapuso, G., Sanchez, A.M., Reigosa, M.J., Gonzaiez, L., Pellissier, F. (1997). Do germination indices adequately reflect allelochemical effects on the germination process? Journal of Chemical Ecology. 23: 2445-2453. 

  5. Chon, S.U., Choi, S.K., Jung, S., Jang, H.G., Pyo, B.S., Kim, S.M. (2002). Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Protection. 21: 1077-1082. 

  6. Chung, I.M., Ahn, J.K., Yun, S.J. (2001). Assessment of allelopathic potential of barnyard grass (Echinochloa crusgalli) on rice (Oryza sativa L.) cultivars. Crop Protection. 20: 921- 928. 

  7. da Silva, B.P., Nepomuceno, M.P., Varela, R.M., Torres, A., Molinillo, J.M.G., Alves, P.L.C.A., Macías, F.A. (2017). Phytotoxicity study on Bidens sulphurea sch. Bip. as a preliminary approach for weed control. Journal of Agriculture and Food Chemistry. 65: 5161-5172. 

  8. FAO. (2009). Situation des foreˆts du monde. Organisation des Nations Unies pour l’alimentation et l’Agriculture, Rome.

  9. Far, M.H. and Bagherzadeh, A. (2018). Assessing allelopathic index for estimating allelopathic potential of Ajowan extracts. Journal of Crop Science and Biotechnology. 21: 165-172. 

  10. Gniazdowska, A. and Bogatek, R. (2005). Allelopathic interactions between plants. Multisite action of allelochemicals. Acta Physiologiae Plantarum. 27: 395-407. 

  11. Harborne, J.B. (1977). Introduction to Ecological Biochemistry. Academic Press, New York.

  12. Khan, A.M., Qureshi, R.A., Ullah, F., Gilani, S.A. (2011). Phytotoxic effects of selected medicinal plants collected from Margalla Hills, Islamabad Pakistan. Journal of Medicinal Plants Research. 5: 4671-4675.

  13. Lesuffleur, F., Paynel, F., Bataille, M.P., Le Deunff, E., Cliquet, J.B. (2007). Root amino acid exudation: Measurement of high efflux rates of glycine and serine from six different plant species. Plant and Soil. 294: 235-246. 

  14. Lovett, J.W., Ryuntyu, M.Y., Liu, D.L. (1989). Allelopathy, chemical communication and plant defense. Journal of Chemical Ecology. 15: 1193-1202. 

  15. Ma, H., Hen, Y.C., Hen, J.C., Zhang, Y., Zhang, T., He, H. (2020). Comparison of allelopathic effects of two typical invasive plants: Mikania micrantha and Ipomoea cairica in Hainan Island. Scientific Reports. 10: 11332. 

  16. Mutlu, S. and Atici, Ö. (2009). Allelopathic effect of Nepeta meyeri Benth. extracts on seed germination and seedling growth of some crop plants. Acta Physiologiae Plantarum. 31: 89-93. 

  17. Nair, P.K.R. (1991). State-of-the-art of agroforestry systems. Forest Ecology and Management. 45: 5-29. 

  18. Oraon, S. and Mondal, S. (2020). Studies on allelopathic effect of aqueous leaf extract of Putranjiva roxburghii Wall. on seed germination and early growth of Chickpea (Cicer arietinum L.). Indian Journal of Agricultural Research. 54: 193-198. 

  19. Oraon, S. and Mondal, S. (2021). Allelopathic effect of Lamiaceous weeds on seed germination and early growth of aromatic rice (Oryza sativa ‘Gobindobhog’). Acta Agrobotanica. 74: 741.

  20. Reigosa, M., Gonzalezy, L., Souto, X. and Pastoriza, J. (2000). Allelopathy in Forest Ecosystems. In: Allelopathy in Ecological Agriculture and Forestry. [Narwal, S.S., Hoagland, R.E., Dilday, R.H., Reigosa Roger, M.J. (Eds.)], Springer, New York. pp. 183-193

  21. Rice, E.L. (1985). Allelopathy: An Overview. In: Chemically Mediated Interactions between Plants and Other Organisms. [Cooper-Driver, G.A., Swain, T., Conn, E.E., (Eds.)], Springer, Boston. pp. 85-105.

  22. Rizvi, S.J.H., Tahir, M., Rizvi, V., Kohli, R.K., Ansari, A. (1999). Allelopathic interactions in agroforestry systems. Critical Reviews in Plant Sciences. 18: 773-796. 

  23. Sahoo, U.K., Upadhyaya, K., Meitei, C.B. (2007). Allelopathic effects of Leucaena leucocephala and Tectona grandis on germination and growth of maize. Allelopathy Journal. 20: 135-143.

  24. Saxena, A., Singh, D.V., Joshi, N.L. (1996). Autotoxic effects of pearl millet aqueous extracts on seed germination and seedling growth. Journal of Arid Environment. 33: 255-260. 

  25. Stowe, L.G. (1979). Allelopathy and its influence on the distribution of plants in an Illinois old field. Journal of Ecology. 67: 1065-1085. 

  26. Thapaliyal, S., Bali, R.S., Singh, B., Todaria, N.P. (2007). Allelopathic effects of trees of economic importance on germination and growth of food crops. Journal of Herbs, Spices and Medicinal Plants. 13: 11-23. 

  27. Tscharntke, T., Clough, Y., Wanger, T.C., Jackson, L., Motzke, I., Perfecto, I., Vandermeer, J., Whitbread, A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation. 151: 53-59. 

  28. Usha, T.N. and Dadlani, M. (2015). Evaluation of seed vigour in soyabean (Glycine max). Legume Research. 38: 308-312.

  29. Vidotto, F., Tesio, F., Ferrero, A. (2008). Allelopathic effects of Helianthus tuberosus L. on germination and seedling growth of several crops and weeds. Biological Agriculture and Horticulture. 26: 55-68. 

  30. Vitousek, P.M. and Sanford Jr, R.L. (1986). Nutrient cycling in moist tropical forest. The Annual Review of Ecology, Evolution and Systematics. 17: 137-167. 

  31. Zribi, I., Omezzine, F., Haouala, R. (2014). Variation in phytochemical constituents and allelopathic potential of Nigella sativa with developmental stages. South African Journal of Botany. 94: 255-262. 

  32. Zimmermanna, A., Webberb, H., Zhaob, G., Ewertb, F., Krosc, J., Wolfd, J., Britza, W., de Vriesc, W. (2017). Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements. Agriculture Systems. 157: 81-92.

Editorial Board

View all (0)