Published In
Legume Research
Article Metrics

0
Views
0
Citations
Reviewed By
In this Article
APC
APC cover the cost of turning a manuscript into a published manuscript through peer-review process, editorial work as well as the cost of hosting, distributing, indexing and promoting the manuscript.
Publish With US
Submit your manuscript through user friendly platform and acquire the maximum impact for your research by publishing with ARCC Journals.
Become a Reviewer/Member
Join our esteemed reviewers panel and become an editorial board member with international experts in the domain of numerous specializations.
Open Access
Filling the gap between research and communication ARCC provide Open Access of all journals which empower research community in all the ways which is accessible to all.
Products and Services
We provide prime quality of services to assist you select right product of your requirement.
Support and Policies
Finest policies are designed to ensure world class support to our authors, members and readers. Our efficient team provides best possible support for you.
Follow us
Research Article
volume 42 issue 4 (august 2019) : 479-484, Doi: 10.18805/LR-466
Transferability of newly developed genomic lentil SSR markers to Cicer species
1Department of Agricultural Biotechnology, Erciyes University, Faculty of Agriculture, Kayseri 38039, Turkey.
Submitted19-11-2018|
Accepted12-07-2019|
First Online 01-08-2019|
doi 10.18805/LR-466
Cite article:- Bakır Melike (2019). Transferability of newly developed genomic lentil SSR markers to Cicer species. Legume Research. 42(4): 479-484. doi: 10.18805/LR-466.
ABSTRACT
Development of microsatellite markers requires a great effort, expertise and research infrastructure. Therefore, cross genera or species transferability of already developed markers has constituted a significant alternative. In this study, transferability of newly developed 53 genomic lentil (Lens culinaris Medik.) SSR markers to 32 accessions of Cicer species including C. arietinum L., C. bijugum K.H. Rech., C. echinospermum P.H. Davis, C. reticulatum Ladiz., C. pinnatifidium Jaub. & Sp., C. anatolicum Alef. was investigated. Of these markers, 33.09% were found to be transferrable to C. arietinum, 37.7% to C. echinospermum, 35.8% to C.reticulatum, 39.6% to C. bijugum, 18.8% to C. pinnatifidium and finally 15.09% to C. anatolicum species. From these markers, 11.3% were found to be transferable to all Cicer species. Transferable 6 polymorphic SSR primers had 19 alleles in 32 accessions with a mean of 3.16 alleles per locus. Polymorphic information content (PIC) values varied between 0.375 (Lc_MCu21) and 0.587 (Lc_MCu53) with an average value of 0.528. Transferable SSR markers were thought to provide significant contributions to inter and intra-specific studies in Cicer species.
REFERENCES
- Bakır, M. and Kahraman, A. (2019). Development of New SSR (Simple Sequence Repeat) Markers for Lentils (Lens culinaris Medik.) from Genomic Library Enriched with AG and AC Microsatellites. Biochem Genetics, 57:338-353.
- Baquerizo-Audiot, E., Desplanque, B., Prosperi, J.M., Santoni, S. (2001). Characterization of microsatellite loci in the diploid legume Medicago truncatula (barrel medic). Molecular Ecology Notes, 1:1–3.
- Choudhary, S., Gaur, R., Gupta, S., Bhatia, S. (2012). EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. Theoretical Apply Genetics, 124: 1449– 1462.
- Choudhary, S., Sethy, N.K., Shokeen, B., Bhatia, S. (2009). Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theoretical Apply Genetics, 118:591-608.
- Choumane, W., Winter, P., Weigand, F., Kahl, G. (2004). Conservation of microsatellite flanking sequences in different taxa of leguminosae. Euphytica, 138: 239-245.
- Cipriani, G., Lot, G., Huang, W.G., Marrazzo, M.T., Peterlunger, E., Testolin, R. (1999). AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: Isolation, characterisation and crossspecies amplification in Prunus. Theoretical Apply Genetics, 99:65–72.
- Datta, S., Kaashyap, M., Kumar, S. (2010b). Amplification of chickpea-specific SSR primers in Cajanus species and their validity in diversity analysis. Plant Breeding, http\\doi.org\10.1111/j.1439-0523.2009.01678.x
- Datta, S., Mahfooz, S., Singh, P., Choudhary, A.K., Singh, F., Kumar, S. (2010a). Cross-genera amplification of informative microsatellite markers from common bean and lentil for the assessment of genetic diversity in pigeonpea. Physiology and Molecular Biology of Plants, 16:123–134.
- Decroocq, V., Fave, M.G., Hagen, L., Bordenave, L., Decroocq, S. (2003). Development and transferability of apricot and grape EST microsatellite markers across taxa. Theoretical Apply Genetics, 106:912– 922.
- Dirlewanger, E., Cosson, P., Tavaud, M., Aranzana, M.J., Poizat, C., Zanetto, A., Arús, P., Laigret, F. (2002). Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theoretical Apply Genetics, 105:127–138.
- Downey, L.D. and Lezzoni, A.F. (2000). Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. Journal of American Society and Horticultural Science, 125:76-80.
- Erpelding, J.E., Blake, N.K., Blake, T.K., Talbert, L.E. (1996). Transfer of sequence-tagged site PCR markers between wheat and barley. Genome, 39:802-810.
- Eujayl, I., Sorrells, M., Baum, M., Wolters, P., Powell, W. (2002). Isolation of EST-derived microsatellite markers for genotyping of the A and B genomes of wheat. Theoretical Apply Genetics, 104:399—407.
- Gaur, R., Sethy, N.K., Choudhary, S., Shokeen, B., Gupta, V., Bhatia, S., et al. (2011). Advancing the STMS genomic resources for defining new locations on the intra-specific genetic linkage map of chickpea (Cicer arietinum L.). BMC Genomics, 12:117.
- Gujaria, N., Kumar, A., Dauthal, P., Dubey, A., Hiremath, P., Bhanu Prakash A., et al. (2011). Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theoretical Apply Genetics, 122: 1577–1589.
- Gupta, R.C., Kaur, K., Kataria, V. (2016). Meiotic chromosomal studies in family Zygophyllaceae R. Br. from Rajasthan. Indian Journal of Genetics and Plant Breeding, 76:111–115.
- Gupta, S., Nawaz, K., Parween, S., Roy, R., Sahu, K., Pole, A.K., Khandal, H., Srivastava, R., Parida, S.K., Chattopadhyay, D. (2017). Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Research, 24: 1–10.
- Gupta, S.K. and Gopalakrishna, T. (2010). Development of unigenederived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species. Genome, 53: 508-523.
- Gurcan, K. and Mehlenbacher, S. (2010). Transferability of Microsatellite Markers in the Betulaceae”, Journal of The American Society for Horticultural Science, 135:159-173.
- Gutierrez, M.V., Vaz Patto, M.C., Huguet, T., Cubero, J.I., Moreno, M.T, Torres, A.M. (2005). Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theoretical Apply Genetics, 110:1210–1217.
- Hempel, K. and Peakall, R. (2003). Cross-species amplification from crop soybean Glycine max provides informative microsatellite markers for the study of inbreeding wild relatives. Genome, 46:382–393
- Hendre, P.S. and Aggarwal, R.K. (2007). DNA Markers: Development and Application for Genetic Improvement of Coffee. In: Genomics- Assisted Crop Improvement. [Varshney RK, Tuberosa R. (ed)] Springer, Dordrecht, p 399–434.
- Hiremath, P.J., Farmer, A., Cannon, S.B., Woodward, J., Kudapa, H., Tuteja, R., et al. (2011). Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnology Journal, 9: 922–931.
- Jain, M., Misra, G., Patel, R.K., Priya, P., Jhanwar, S., Khan, A.W., et al. (2013). A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant Journal, 74: 715–729.
- Jha, U., Chandra, K., Paresh, P., Singh, N. (2019). QTL mapping for heat stress tolerance in chickpea (Cicer arietinum L.). Legume Research-An Internatýonal Journal 10.18805/LR-4121.
- Jhanwar, S., Priya, P., Garg, R., Parida, S.K., Tyagi, A.K., Jain, M. (2012). Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnology Journal, 10:690–702.
- Lefort, F., Lally, M., Thompson, D., Douglas, G.C. (1998). Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally, Ireland. Silvae Genetica, 47:5-6.
- Liu, K. and Muse, S.V. (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21:2128-2129.
- Nayak, S.N., Zhu, H., Varghese, N., Datta, S., Choi, H.K., Horres, R., et al. (2010). Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theoretical Apply Genetics, 120: 1415–1441.
- Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences. 70:3321-3323.
- Pandian, A., Ford, R., Taylor, W.J. (2000). Transferability of sequence tagged microsatellite sites (STMS) primers across major pulses. Plant Molecular Biology Reports, 18:395-395.
- Peakall, R., Gilmore, S., Keys, W., Morgante, M., Rafalski, A. (1998). Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Molecular Biology and Evolution, 15:1275-1287.
- Powell, W., Mackray, G.C., Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1:215– 222.
- Reddy, M.R.K., Rathour, R., Kumar, N., Katoch, P., Sharma, T.R. (2010). Cross-genera legume SSR markers for analysis of genetic diversity in Lens species. Plant Breeding, 129:51-518.
- Rialch, I., Kalia, R., Chaudhary, H., Kumar, B.C., Bhandari, J.K., Sood, V. (2018). Comparative analysis of diversity based on morpho- metric and molecular markers in chickpea over different environments. Legume Research-An International Journal, 10.18805/ LR-3907.
- Roa, A.C., Chavarriaga-Aguirre, P., Duque, M.C., Maya, M.M., Bonierbale, M.W., Iglesias, C., Tohme, J. (2000). Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. American Journal of Botany, 87:1647–1655.
- Rossetto, M. (2001). Sourcing of SSR markers from related plant species. In: Plant genotyping: the DNA fingerprinting of plants. [Henry RJ (ed)] CABI Publishers, New York, N.Y. pp. 211–224.
- Rossetto, M., McNally, J., Henry, R.J. (2002). Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae. Theoretical Apply Genetics, 104:61–66.
- Schuelke, M. (2000). An Economic Method for the Fluorescent Labelling of PCR Fragments. Nature Biotechnogy, 18:233-234.
- Sethy, N.K., Shokeen, B., Edwards, K.J., Bhatia, S. (2006). Development of microsatellite markers and analysis of intra-specific genetic variability in chickpea (Cicer arietinum L.). Theoretical Apply Genetics, 112: 1416– 1428.
- Shivakumar, M.S., Ramesh, S., Mohan Rao, A., Udaykumar, H.R., Keerthi, C.M. (2017). Cross legume species/genera transferability of SSR Markers and their utility in assessing polymorphism among advanced breeding lines in dolichos bean (Lablab purpureus L.). International Journal of Current Microbiology Applied Sciences, 6:656-668.
- Smykal, P., Coyne, C.J., Ambrose, M.J., Maxted, N., Schaefer, H., Blair, M.W., Berger, J., Greene, S.L., et al. (2015). Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences, 34: 43-104.
- Sosinski, B., Gannavarapu, M., Hager, L.D., Beck, L.E., King, G.J., Ryder, C.D., Rajapakse, S., et al. (2000). Characterization of microsatellite markers in peach [Prunus persica (L) Batsch]. Theoretical Apply Genetics, 101:421–428.
- Suman, S., Rani, B., Sharma, V., Kumar, H. (2018). SSR marker based profiling and diversity analysis of mungbean [Vigna radiata (L.) Wilczek] genotypes. Legume Research-An Internatýonal Journal 10.18805/LR-3918.
- Tamura, K., Dudley, J., Nei, M., Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24:1596-1599.
Disclaimer :
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Copyright :
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this Article
APC
APC cover the cost of turning a manuscript into a published manuscript through peer-review process, editorial work as well as the cost of hosting, distributing, indexing and promoting the manuscript.
Publish With US
Submit your manuscript through user friendly platform and acquire the maximum impact for your research by publishing with ARCC Journals.
Become a Reviewer/Member
Join our esteemed reviewers panel and become an editorial board member with international experts in the domain of numerous specializations.
Open Access
Filling the gap between research and communication ARCC provide Open Access of all journals which empower research community in all the ways which is accessible to all.
Products and Services
We provide prime quality of services to assist you select right product of your requirement.
Support and Policies
Finest policies are designed to ensure world class support to our authors, members and readers. Our efficient team provides best possible support for you.
Follow us
Published In
Legume Research