Molecular diversity and phenotypic characterization of A, B and R lines in Pigeonpea [Cajanus cajan (L.) Millsp.]

DOI: 10.18805/LR-3636    | Article Id: LR-3636 | Page : 1-11
Citation :- Molecular diversity and phenotypic characterization of A, B and R lines in Pigeonpea [Cajanus cajan (L.) Millsp.].Legume Research-An International Journal.2018.(41):1-11
Yamanura, R. Lokesha, S. Muniswamy, G. Girish, M. Mahiboobsa and Ramesh yaman3181aug8@gmail.com
Address : Department of Genetics & Plant Breeding, College of Agriculture, UAS, Raichur – 584 102, Karnataka, India.
Submitted Date : 16-10-2015
Accepted Date : 4-02-2017

Abstract

An experiment was carried out with 17 CGMS lines and their maintainers along with 22 diversified restorer (R) lines to obtain information on molecular diversity and phenotypic characterization. All exhibited enormous phenotypic variability. Anthocynin pigmentation on hypocotyls was present in 50 genotypes and it was absent in six genotypes viz., ICPA 2043, ICPB 2043, GT 307A, GT 307B, RAJA & BSMR 736. Determinate type of growth habit was found in three genotypes viz., ICPA 2078, ICPB 2078 & GC 11-39. A total of 30 SSR markers were used across 56 genotypes. The polymorphic markers amplified a total of 76 alleles with an average of 2.93 alleles per markers and number of alleles ranged from 2 to 4 per marker. Major allele frequency ranged from 0.34 (CcM0057) to 0.79 (CcM0402) with an average of 0.47 per marker. Molecular diversity among 17 male sterile (A) lines and their maintainer (B) lines yielded three main clusters. All the ‘A’ and ‘B’ lines found isogenic, as indicated by close clusters, except for the genotypes GRGA/B 2, GRGA/B 4, GRGA/B 6 and GT 307A/B. Hence more number of back crosses are needed to make them as isonuclear lines. 

Keywords

A- lines B-lines Cytoplasmic-nuclear male-sterility Genetic male-sterility Molecular diversity Pigeonpea R- lines.

References

  1. Acharya, S. and Patel J. B. (2011). Characterization of diversified cytoplasmic genetic male sterile (A) and restorer (R) lines of pigeonpea for good heterotic combinations. Jour. Food Leg. 24(1): 28-32.
  2. AICRP annual report. 2013-14.
  3. Anderson, J. A., Churchill, G. A., Sutrique, J. E., Tanksley, S. D., Sorrells, M. E. (1993). Optimizing parental selection for genetic linkage maps. Genome. 36: 181–186.
  4. Bateson, W., Saundero, E. R. and Punnett, R. C. (1908). Male-sterility in Lathyrus odoratus. Rep. Evol. Comm. Roy. Soc. London. 4: 16.
  5. Bohra, A., Dubey, A., Saxena R.K., Penmetsa R.V., Poornima K.N., Kumar N., Farmer A.D., Srivani G., Upadhyaya H.D.,Gothalwal R., Ramesh S., Singh D., Saxena K.B., Kishor P.B.K., Singh N.K., Town C.D., May G.D., Cook D.R.and Varshney R.K. (2011). Analysis of BAC-end sequences (BESs) and development of BES-SSR markers forgenetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.). BMC Plant Biology. 11:56.1-15.
  6. Burns, M. J., Edwards, K. J, Newbury, H. J., Ford-Lloyd, B. V,. Baggott, C. D. (2001). Development of simple sequence repeat (SSR) markers for the assessment of gene flow and genetic diversity in pigeonpea (Cajanus cajan). Mol. Ecol. Notes. 1: 283-285.
  7. Correns, C. (1908). Die poller dev mannlichen keimzellen bei de. Geschle chtsbestimmung dev gynodiocischen Pflanzen. Ber Dtsch Bot. Ges. 26:686-701.
  8. Cuc, L.M., Mace, E.S., Crouch, J. H., Quang, V. D., Long, T. D., Varshney, R. K., (2008) Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biology 8:55.
  9. Darwin, C. (1890). The Variation of Animals and Plants Under Domestication. Murray, London.
  10. Datta J., Lal N., Kaashyap M. and Gupta P.P. (2011). Efficiency of Three PCR based marker Systems for detecting DNA Polymorphism in Cicer arietinum (L.) and Cajanus cajan (L.)Millspaugh. Genet. Eng. And Biotech.J. 5: 1-15.
  11. Indira K. P., A.R. Muthiah and P. Jayamani. 2014. Molecular characterisation of CGMS, maintainer and inbred lines and diversity analysis in pigeonpea [Cajanus cajan (L.) Millsp.] Legume Res. 38 (6) 2015: 734-741
  12. Kolreuter, D. J. G. (1763). Vorlaufige Nachricht von Einigen das Geschlecht der Pflanzen Betreffendon Versuchen und Beobachtungen. Fortset zung1. Ostwalds klassiker der Exakten Wissenschaften Nr. 41, Engelmann, Leipzig.
  13. Mallikarjuna N., Saxena K.B. and Jadhav D.R. (2011). Cajanus. In: Kole C (ed). Wild Crop Relatives: Genomic and Breeding Resources. Legume Crops and Forages. P 21-33.
  14. Manyasa, E. O., Silim, S. N., Christiansen, J. L. and Githiri, S. M. (2007). Diversity in Tanzanian pigeonpea [Cajanus cajan (L.) Millsp.] Landraces. In: Proceedings of the Ist International Conference on Indigenous Vegetables and Legumes. Prospectus for Fighting Poverty, Hunger and Malnutrition , 12-15 December 2006, Hyderabad, Andhra Pradesh, India.
  15. Metkar, A. P., Gawande, V. L. and Gahukar, S. J. (2010). Molecular characterization of CMS lines in pigeonpea (Cajanus cajan (L.) Millsp.). J. Food Legume. 23(3&4): 234-237.
  16. Odeny, D.A., Jayashree, B., Ferguson, M., Hoisington, D., Crouch, J., Gebhardt, C. (2007). Development, characterization and utilization of microsatellite markers in pigeonpea. Plant Breed. 126: 130-137.
  17. Odeny D.A., Jayashree B., Gebhardt C. and Crouch J. (2009). New Microsatellite Markers for Pigeonpea (Cajanus cajan(L.) Millsp.). BMC Research Notes. 2: 35.
  18. Panguluri, S.K., Janaiah, K., Govil, J. N., Kumar, P. A., Sharma, P. C. (2006). AFLP fingerprinting in pigeonpea (Cajanus cajan (L.) Millsp.) and its wild relatives. Genet Reso Crop Evol 53: 523-531.
  19. Perrier, X., Floria, A. and Bonnot, F. (2003). Data analysis methods in genetic diversity of cultivated tropical plants, pp. 43-76.
  20. Phillip, S., (2002). Characterization of Zambian pigeonpea [Cajanus cajan (L.) Millsp.] germplasm using morphological characters. M. Sc. Thesis, Univ. Zambia. Pp:17.
  21. Saxena, K.B., Sultana, R., Mallikarjuna, N., Saxena, R. K., Kumar, R. V., Sawargaonkar, S. L. and Varshney. R. K. (2010). Male sterility systems in pigeonpea and their role in enhancing yield. Plant Breed. 129: 125-134.
  22. Saxena, R. K., Prathima, C., Saxena, K. B., Hoisington, D. A., Singh, N. K., Varshney, R. K. (2010a). Novel SSR markers for polymorphism detection in pigeonpea (Cajanus spp.). Plant Breed. 129: 142-148.
  23. Saxena, R. K., Saxena, K. B., Kumar, R. V., Hoisington, D. A., Varshney, R. K. (2010b). SSR-based diversity in elite pigeonpea genotypes for developing mapping populations to map resistance to Fusarium wilt and sterility mosaic disease. Plant Breed. 129:135–141.
  24. Saxena, R. K., Saxena, K. B., Varshney, R. K. (2010c). Application of SSR markers for molecular characterization of hybrid parents and purity assessment of ICPH 2438 hybrid of pigeonpea [Cajanus cajan (L.) Millsp.]. Mol Breed. 26: 371-380.
  25. Singh S., Singh K.N., Kant R., Mehfooz S. and Dutta S. (2008). Assessment of genetic diversity among Pigeonpea genotypes using SSR markers. Indian J. Genet., 68: 255-260.
  26. Souframanien, J., Manjaya, J. G., Krishna, T. G., Pawar, S. E. (2003). Random amplified polymorphic DNA analyses of cytoplasmic male sterile and male fertile pigeonpea (Cajanus cajan (L.) Millsp.). Euphytica. 129: 293-299.
  27. Tikka, S.B.S, Parmar L.D and Chuahan, R.M. (1997). First record of cytoplasmic genic male sterility system in pigeonpea (Cajanus cajan (L.) Millsp.) through wide hybridization. G u j a r a t Agricultural University. Research Journal. 22:160-162.
  28. Yang, S., Pang, W., Ash, G., Harper, J., Carling, J., Wenzl, P., Huttner, E., Zong, X. and Kilian, A. (2006). Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet. 113: 585-595. 

Global Footprints