Loading...

An evaluation of phosphorus uptake in Sesbania cannabina when ferric phosphate is applied in the presence of phosphate-solubilizing rhizobia

DOI: 10.18805/LR-357    | Article Id: LR-357 | Page : 311-315
Citation :- An evaluation of phosphorus uptake in Sesbania cannabina when ferric phosphate is applied in the presence of phosphate-solubilizing rhizobia.Legume Research.2018.(41):311-315
Atsushi Matsumura and Hiroyuki Daimon matsu@plant.osakafu-u.ac.jp
Address : Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-5831, Japan.
Submitted Date : 11-03-2017
Accepted Date : 15-12-2017

Abstract

Deficient available phosphorus (P) in soils can majorly limit crop production. Furthermore, nodule formation in legumes is inhibited in P-deficient soil. Phosphate-solubilizing rhizobia are supposed to improve the plant P uptake even in insoluble P accumulated soil. We investigated the utilization of insoluble ferric phosphate, which is generally less available for agricultural crops, by Sesbania cannabina inoculated with phosphate-solubilizing rhizobia. Our evaluation of the P-solubilizing capacity showed that P was mineralized from ferric phosphate in inoculated rhizobia. In the soluble P treatment, nodule dry weight was significantly correlated with shoot dry weight and P content. Nodule dry weight and nitrogenase activity in S. cannabina supplied with ferric phosphate were significantly higher than those in the soluble P treatment. But, these increases were not necessarily effective on P status in the plants supplied with ferric phosphate.

Keywords

Green manure Nodule Phosphorus mineralization Rhizobia.

References

  1. Alikhani, H.A., Saleh-Rastin, N. and Antoun, H. (2006). Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil, 287: 35–41.
  2. Al-Niemi, T.S., Kahn, M.L. and McDermott, T.R. (1998). Phosphorus uptake by bean nodules. Plant Soil, 198: 71–78.
  3. Aono, T., Kanada, N., Ijima, A. and Oyaizu, H. (2001). The response of the phosphate uptake system and the organic acid exudation system to phosphate starvation in Sesbania rostrata. Plant Cell Physiol., 15: 1253–1264.
  4. Arnon D.I. (1949). Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiol., 24: 1–15.
  5. Bahadur, L. and Tiwari, D.D. (2014). Nutrient management in mung bean (Vigna radiata L.) through sulphur and biofertilizers. Legume Res., 37: 180–187.
  6. Cui, H., Yi, Q., Yang, X., Wang, X., Wu, H. and Zhou, J. (2017). Effects of hydroxyapatite on leaching of cadmium and phosphorus and their availability under simulated acid rain. J. Environ. Chem. Eng., 5: 3773–3779.
  7. Chuang, C.C., Kuo, Y.L., Chao, C.C. and Chao, W.L. (2007). Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol. Fertil. Soils, 43: 575–584.
  8. Daimon, H., Hori, K., Shimizu, A. and Nakagawa, M. (1999). Nitrate-induced inhibition of root nodule formation and nitrogenase activity in the peanut (Arachis hypogaea L.). Plant Prod. Sci., 2: 81–86.
  9. Daimon,H., Nobuta, K., Ohe, M., Harada, J. and Nakayama, Y. (2006). Tricalcium phosphate solubilization by root nodule bacteria of Sesbania cannabina and Crotalaria juncea. Plant Prod. Sci., 9: 388–389.
  10. Hariprasad, P., and Niranjana, S.R. (2009). Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil, 316: 13–24.
  11. Kleinert, A., Venter, M., Kossmann, J. and Valentine, A. (2014). The reallocation of carbon in P deficient lupins affects biological nitrogen fixation. J. Plant Physiol., 171: 1619–1624. 
  12. Kouas, S., Labidi, N., Debez, A. and Abdelly, C. (2005). Effect of P on nodule formation and N fixation in bean. Agron. Sustain. Dev., 25: 389–393. 
  13. Mew, M. (2016). Phosphate rock costs, prices and resources interaction. Sci. Total Environ., 542: 1008–1012.
  14. O’Hara, G.W., Dilworth, M.J., Boonkerd, N. and Parkpian, P. (1988). Iron-deficiency specifically limits nodule development in peanut inoculatedwith Bradyrhizobium sp. New Phytol., 108: 51–57.
  15. Peix, A., Rivas-Boyero, A.A., Mateos, P.F., Rodrigues-Barrueco, C., Martinez-Molina, E. and Veleaquez, E. (2001). Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol. Biochem., 33: 103–110.
  16. Perez, E., Sulbaran, M., Ball, M.M. and Yarzabal, L.A. (2007). Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol. Biochem., 39: 2905–2914.
  17. Plessner, O., Klapatch, T. and Guerinot, M.L. (1993). Siderophore utilization by Bradyrhizobium japonicum. Appl. Environ. Microbiol., 59: 1688–1690.
  18. Qin, L., Zhao, J., Tian, J., Chen, L., Sun, Z., Guo, Y., Lu, X., Gu, M., Xu, G. and Liao, H. (2012). The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiol., 159: 1634–1643.
  19. Reijnders, L. (2014). Phosphorus resources, their depletion and conservation, a review. Resour. Conserv. Recycl., 93: 32–49.
  20. Robson, A.D., O’Haua G.W. and Abbott, L.K. (1981). Involvement of phosphorus in nitrogen fixation by subterranean clover. (Trifolium subterraneum L.). J. Plant Physiol., 8: 427–436. 
  21. Ryan, P.R., and Delhaize, E. (2001). Function and mechanism of organic anion exudation from plant roots. Ann. Rev. Plant Physiol. Plant Mol. Biol., 52: 527–560.
  22. Sa, T.M., and Israel, D.W. (1991). Energy status and functioning of phosphorus-deficient soybean nodules. Plant Physiol., 97: 928–    935. 
  23. Schulze, J., Temple, G., Temple, S.J., Beschow, H. and Vance, C.P. (2006). Nitrogen fixation by white lupin under phosphorus deficiency. Ann. Bot., 98: 731–740.
  24. Smil, V. (2000). Phosphorus in the environment: natural flows and human interferences. Ann. Rev. Energy Environ., 25: 53–88.
  25. Sridevi, M., and Mallaiah, K.V. (2009). Phosphate solubilization by Rhizobium strains. Indian J. Microbiol., 49: 98–102.
  26. Stumm, W., and Morgan, J.J. (1995). Aquatic Chemistry. Chemical Equilibria and rates in natural waters, 3rd ed. John Wiley, New York. 

Global Footprints