Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 29 issue 3 (september 2006) : 163 - 168

ESTABLISHMENT OF AN IN VITRO REGENERATION SYSTEM SUITABLE FOR AGROBACTERIUM MEDIATED TRANSFORMATION OF KABULI TYPE CHICKPEA (CICER ARIETINUM L.)

P. Das, B.K. Sarmah*
1Department of Agricultural Biotechnology, Assam Agricultural University. Jorhat - 785 013, India
  • Submitted|

  • First Online |

  • doi

Cite article:- Das P., Sarmah* B.K. (2024). ESTABLISHMENT OF AN IN VITRO REGENERATION SYSTEM SUITABLE FOR AGROBACTERIUM MEDIATED TRANSFORMATION OF KABULI TYPE CHICKPEA (CICER ARIETINUM L.). Legume Research. 29(3): 163 - 168. doi: .
An in vitro regeneration system using cotyledonary explants with half embryonic axes was developed for kabuli type chickpea. Murashige and Skoog's (MS) medium was supplemented with different concentrations of two cytokinins (BAP and Kinetin) and anauxin (NAA) in order to determine the optimum concentration of hormones required for regeneration of large number of multiple shoots. Healthy multiple shoots were also used for direct rooting in tissue culture and also grafted in vitro. Shoots were also regenerated following the same protocol after the explants were infected with an Agrobacterium strain AGL1. Thus, this regeneration protocol will be useful for Kabuli type chickpea transformation using Agrobacterium tumifaciens as vector.
    1. Brandt, E.B. et al. (1994). In Vitro Cell Dev. Biol., 30: 75-80.
    2. Das, A. et al. (2002). Fourth National Symposium on Biochemical Engineering and Biotechnology, New Delhi, pp. 174-176.
    3. FAO (1994). In: Food and Agricultural Organization of the United Nations : Production Yearbook. FAO, Kave, Italy.
    4. Fontana G.S. et al. (1993). Plant Cell Rep., 12: 194-198.
    5. Gamborg, O.l. (1968). Exp. Cell Res., 50: 151-158.
    6. Grafinkel, J. (1980). J. Bacteriol., 144: 732-743.
    7. Kartha, K.K. et al. (1981). Canadian J. Bot., 1671-1679.
    8. Kar, S. et al. (1996). Plant Cell Report, 16: 32-37.
    9. Krishanamurthy, K.V. et al. (2000). Plant Cell Report., 19: 235-240.
    10. Skoog and Miller, C.O. (1957). Symp. Soc. Exptl. Biol., 11: 118-131.
    11. Sarmah, B.K. and Higgins, T.J. (1999). In: Annual Report, The Mc. Knight Foundation, Minneapolis, Minneapolis, USA, 15-22.
    12. Singh, K.B. (1992). Field Crop Res., 53: 161-170.
    13. Stefaans, P.O. et al. (1990). In: ‘Plant Cell Culture : A Practical Approach’. (Dixon, R.A. and Gonzales, R.A. ed.), pp. 127-134.
    14. Wang, P.J. and Charles, A. (1991). In: ‘Biotechnology in Agriculture and Forestry’ Vol. 17, (Bajaj, Y.P.S. ed.), Springer-Verlag, N.Y., pp. 41-49.

    Editorial Board

    View all (0)