Published In
Legume Research
Article Metrics

0
Views
0
Citations
Reviewed By
In this Article
APC
APC cover the cost of turning a manuscript into a published manuscript through peer-review process, editorial work as well as the cost of hosting, distributing, indexing and promoting the manuscript.
Publish With US
Submit your manuscript through user friendly platform and acquire the maximum impact for your research by publishing with ARCC Journals.
Become a Reviewer/Member
Join our esteemed reviewers panel and become an editorial board member with international experts in the domain of numerous specializations.
Open Access
Filling the gap between research and communication ARCC provide Open Access of all journals which empower research community in all the ways which is accessible to all.
Products and Services
We provide prime quality of services to assist you select right product of your requirement.
Support and Policies
Finest policies are designed to ensure world class support to our authors, members and readers. Our efficient team provides best possible support for you.
Follow us
volume 36 issue 3 (june 2013) : 250-254
EFFECT OF HIGH TEMPERATURE ON GROWTH, BIOMASS AND YIELD OF FIELD PEA GENOTYPES
1Division of Basic Science
Indian Institute of Pulses Research, Kanpur – 208 024, India
ABSTRACT
A field experiment was conducted during rabi (winter) season of 2008-09 and 2009-10. Fifteen field pea genotypes were sown under normal and late seeded condition and the crop was irrigated. Crop was monitored for membrane stability index at podding, plant height at podding, total biological yield, and seed yield and harvest index. The observed parameters showed significant variation for seeding dates, genotypes and their interactive effects. Under late seeded condition crop was exposed to high temperature during flowering and seed filling stages. Which induced reduction in mean membrane stability index (28.8%), plant height (60.2%) total biomass yield (61.7%), seed yield (68.9%) and harvest index (19.3%). The mean yield stability index was 80.7%. On the basis of minimum reduction in observed traits, genotypes KPF 103, DMR 15, IPFD 4-6, were found to be having comparatively higher amount of resistance towards high temperature stress. IPFD 99-7, IPFD 3-17, IPFD 2-6, IPFD 1-10, HUDP 16 and DPR 13 were adjudged to moderately resistant for high temperature stress as they were having more than 75.0% yield stability index.
KEYWORDS
REFERENCES
- Aggarwal, P.K. (2007). Climate change: Implications for Indian agriculture. Jalvigyan Sameeksha. 22: 37-46.
- Bhardwaj, H.L. Bhardwaj, H.L. A.A. Hamama and Rangappa, M. (2002). Planting date and genotype effect on tepary bean productivity. Hortic. Sci. 37 (2): 317-318.
- Brown, D.M. (1960). Soya bean ecology. I. Development temperature relationships from controlled environment studies. Agron. Journal. 52: 493-496.
- Ketring, D.L. (1984). Temperature effects on vegetative and reproductive development of peanuts. Crop Sci. 24:877–882.
- Pathak, H. and R. Wassmann (2009). Quantitative evaluation of climatic variability and risks for wheat yield in India. Climate change 93: 157-175.
- Prasad, P.V.V., Pissipati, S.R., Ristic, Z., Bukovaik, U. and Fritz, A.K. (2008). Impact of night time temperature on physiology and growth of spring wheat. Crop Science. 48: 2372-2380.
- Saikia, U.S. Kumar, P.V. Desai, S. Srivastava, N.N. and Venkateswarlu. (2009). Research Bulletin 3: AICRP, Agro- metrology, CRIDA, and Hyderabad.p.31
- Sairam, R.K. Deshmukh, P.S. and Shukla, D.S. (1997). Tolerance to drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J. of Agro. and Crop Sci. 178:171-177.
- Sharma Natu.P. Sumesh,K.V.Lohat,V. and Ghildiyal, M.C.(2006). High temperature effect on grain growth in wheat cultivars: an evaluation of responses. Indian. J. Plant Physi.11:239-245.
- Schneider, S.H. (1989). The changing climate. Scientific American. 261 (3):70-79.
- Wery J. Silim S.N. Knights E.J. Malhotra R.S. and Cousin R. (1994) Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes, Euphytica 73: 73–83.
Disclaimer :
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Copyright :
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this Article
APC
APC cover the cost of turning a manuscript into a published manuscript through peer-review process, editorial work as well as the cost of hosting, distributing, indexing and promoting the manuscript.
Publish With US
Submit your manuscript through user friendly platform and acquire the maximum impact for your research by publishing with ARCC Journals.
Become a Reviewer/Member
Join our esteemed reviewers panel and become an editorial board member with international experts in the domain of numerous specializations.
Open Access
Filling the gap between research and communication ARCC provide Open Access of all journals which empower research community in all the ways which is accessible to all.
Products and Services
We provide prime quality of services to assist you select right product of your requirement.
Support and Policies
Finest policies are designed to ensure world class support to our authors, members and readers. Our efficient team provides best possible support for you.
Follow us
Published In
Legume Research