Published In
Legume Research
Article Metrics

0
Views
0
Citations
Reviewed By
In this Article
APC
APC cover the cost of turning a manuscript into a published manuscript through peer-review process, editorial work as well as the cost of hosting, distributing, indexing and promoting the manuscript.
Publish With US
Submit your manuscript through user friendly platform and acquire the maximum impact for your research by publishing with ARCC Journals.
Become a Reviewer/Member
Join our esteemed reviewers panel and become an editorial board member with international experts in the domain of numerous specializations.
Open Access
Filling the gap between research and communication ARCC provide Open Access of all journals which empower research community in all the ways which is accessible to all.
Products and Services
We provide prime quality of services to assist you select right product of your requirement.
Support and Policies
Finest policies are designed to ensure world class support to our authors, members and readers. Our efficient team provides best possible support for you.
Follow us
volume 36 issue 3 (june 2013) : 234-240
POLYAMINES PLAY A POSITIVE ROLE IN SALT TOLERANT MECHANISMS BY ACTIVATING ANTIOXIDANT ENZYMES IN ROOTS OF VEGETABLE SOYBEAN
1Institute of Vegetable,
Zhejiang Academy of Agricultural Sciences, Hangzhou- 310 021, China
ABSTRACT
Two cultivars contrasting in NaCl tolerance were used to investigate the possible involvement of polyamines in salt tolerant mechanisms in roots of vegetable soybean. ‘Tianfeng’, the salt tolerant cultivar exhibited overall higher contents of free, soluble conjugated and insoluble bound forms of polyamines (putrescine, spermidine and spermine) except for free spermidine over the salt sensitive line during the course of NaCl treatment for 15 days. Consistent with this observation, arginine decarboxylase, the essential enzyme of polyamines biosynthesis and two enzymes catalyzing breakdown of polyamines were differentially regulated between the two cultivars. Antioxidant enzymes downstream to the polyamines signaling globally showed higher activity in ‘Tianfeng’, resulting in lower contents of reactive oxygen species and malondialdehyde subsequently. These results taken together indicate that higher levels of polyamines may be important in conferring enhanced salt tolerance in roots of vegetable soybean by activating antioxidant enzymes and, therefore, attenuating oxidative damage.
REFERENCES
- Alvarez, I., Tomaro, M. L. and Benavides, M. P. (2003). Changes in polyamines, proline and ethylene in sunflower calluses treated with NaCl. Plant Cell Tissue Organ Cult, 74:51-59
- Aoki, A., Kanegami, A., Mihara, M., Kojima, T., Shiraiwa, M. and Takahara, H. (2005). Moleclar characterization of a novel soybean gene encoding a leucine-zipper-like protein induced to salt stress. Gene, 356:135-145
- Aziz, A., Martin-Tanguy, J. and Larher, F. (1999). Salt stress-induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs. Plant Sci, 145:83-91
- Bouchereau, A., Aziz, A., Larher, F. and Martin-Tanguy, J. (1999). Polyamines and environmental challenges: recent development. Plant Sci, 140:103-125
- Cakmak, I. and Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol, 98:1222-1227
- Campestre, M. P., Bordenave, C. D., Origone, A. C., Menéndez, A. B., Ruiz, O. A., Rodríguez, A. A. and Maiale, S. J. (2011). Polyamine catabolism is involved in response to salt stress in soybean hypocotyls. J Plant Physiol, 168:1234-1240
- Claussen, W., Brückner, B., Krumbein, A. and Lenz, F. (2006). Long-term response of tomato plants to changing nutrient concentration in the root environment-the role of proline as an indicator of sensory fruit quality. Plant Sci, 171:323-331
- Dionisio-Sese, M. L. and Tobita, S. (1998). Antioxidant response in rice seedlings to salinity stress. Plant Sci, 135:1-9
- Duan, J. J., Li, J., Guo, S. R. and Kang, Y. Y. (2008). Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity. J Plant Physiol, 165:1620-1635
- Elstner, E. F. and Heupel, A. (1976). Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib). Planta, 193:283-289
- Flowers, T. J. and Yeo, A. R. (1995). Breeding for salinity resistance in crop plants. Where next? Aust J Plant Physiol, 22:875-884
- Heath, R. L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 125:189-198
- Janicka-Russak, M., Kabala, K., Mlodziñska, E. and Klobus, G. (2010). The role of polyamines in the regulation of the plasma membrane and the tonoplast proton pumps under salt stress. J Plant Physiol, 167:261-269
- Keatinge, J. D. H., Easdown, W. J., Yang, R. Y., Chadha, M. L. and Shanmugasundaram, S. (2011). Overcoming chronic malnutrition in a future warming world: the key importance of mungbean and vegetable soybean. Euphytica, 180:129-141
- Legocka, J. and Kluk, A. (2005). Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings. J Plant Physiol, 162:662-668
- Martin-Tanguy, J. (2001). Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul, 34:135-148
- Matsuda, H. (1984). Some properties of arginine decarboxylase in Vicia faba leaves. Plant Cell Physiol, 25:523-530
- Omran, R. G. (1980). Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiol, 65:407-408
- Patterson, B. D., Mackae, E. A. and Ferguson, I. B. (1984). Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem, 139:487-492
- Roussos, P. A. and Pontikis, C. A. (2007). Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro. J Plant Physiol, 164:895-903
- Roychoudhury, A., Basub, S. and Sengupta, D. N. (2011). Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J Plant Physiol, 168:317-328
- Saldivar, X., Wang, Y.J., Chen, P. and Mauromoustakos, A. (2010). Effects of blanching and storage conditions on soluble sugar contents in vegetable soybean. LWT Food Sci Technol, 43: 1368-1372
- Santa-Cruz, A., Acosta, M., Rus, A. and Bolarin, M. C. (1999). Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem, 37:65-71
- Sharma, R. and Rajam, M. V. (1995). Spatial and temporal changes in endogenous polyamine levels associated with osmotic embryogenesis from different hypocotyls segments of eggplant (Solanum melongena L). J Plant Physiol, 146:658-664
- Shi, D. and Sheng, Y. (2005). Effects of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ Exp Bot, 54:8-21
- Sobhanian, H., Razavizadeh, R., Nanjo, Y., Ehsanpour, A. A., Jazii, F. R., Motamed, N. and Komatsu, S. (2010). Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci, 8:2-15
- Su, G. X., An, Z. F., Zhang, W. H. and Liu, Y. L. (2005). Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls. J Plant Physiol, 162:1297-1303
- Tang, W. and Newton, R. J. (2005). Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regul, 46:31-43
- Toorchi, M., Yukawa, K., Nouri, M. Z. and Komatsu, S. (2009). Proteomics approach for identifying osmotic-stress- related proteins in soybean roots. Peptides, 30:2108-2117
- Verma, S. and Mishra, S. N. (2005). Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol, 162:669-677
- Wang, C., Zhu, Y. L., Yang, L. F., Chen, G. and Mao, Y. (2009). Screening of vegetable soybean cultivars for salt tolerance and their physiological characteristics. Jiangsu J Agric Sci, 25:621-627 (in Chinese)
- Wei, G. P., Yang, L. F., Zhu, Y. L. and Chen, G. (2009). Changes in oxidative damage, antioxidant enzyme activities and polyamine contents in leaves of grafted and non-grafted eggplant seedlings under stress by excess of calcium nitrate. Sci Hortic, 120:443-451
- Wen, X. P., Ban, Y., Inoue, H., Matsuda, N., Kita, M. and Moriguchi, T. (2011). Antisense inhibition of a spermidine synthase gene highlights the role of polyamines for stress alleviation in pear shoots subjected to salinity and cadmium. Environ Exp Bot, 72:157-166
- Xu, X. Y., Fan, R., Zheng, R., Li, C. M. and Yu, D. Y. (2011). Proteomic analysis of seed germination under salt stress in soybeans. J Zhejiang Univ-Sci B, 12:507-517
- Zhang, G. W., Liu, Z. L., Zhou, J. G. and Zhu, Y. L. (2008). Effects of Ca(NO3)2 stress on oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants. Plant Growth Regul, 56:7-19
- Zhang, W. P., Jiang, B., Li, W. G., Song, H., Yu, Y. S. and Chen, J. F. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Sci Hortic, 122:200-208
- Zhou, Q. and Yu, B. J. (2010). Changes in content of free, conjugated and bound polyamines and osmotic adjustment in adaptation of vetiver grass to water deficit. Plant Physiol Biochem, 48:417-425
Disclaimer :
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Copyright :
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this Article
APC
APC cover the cost of turning a manuscript into a published manuscript through peer-review process, editorial work as well as the cost of hosting, distributing, indexing and promoting the manuscript.
Publish With US
Submit your manuscript through user friendly platform and acquire the maximum impact for your research by publishing with ARCC Journals.
Become a Reviewer/Member
Join our esteemed reviewers panel and become an editorial board member with international experts in the domain of numerous specializations.
Open Access
Filling the gap between research and communication ARCC provide Open Access of all journals which empower research community in all the ways which is accessible to all.
Products and Services
We provide prime quality of services to assist you select right product of your requirement.
Support and Policies
Finest policies are designed to ensure world class support to our authors, members and readers. Our efficient team provides best possible support for you.
Follow us
Published In
Legume Research