Loading...

Humidity Restriction, High Night Temperature and their Combination, during Post Flowering on Common Bean (Phaseolus vulgaris L.) Canopy and Pod Senescence

DOI: 10.18805/LR-592    | Article Id: LR-592 | Page : 634-640
Citation :- Humidity Restriction, High Night Temperature and their Combination, during Post Flowering on Common Bean (Phaseolus vulgaris L.) Canopy and Pod Senescence.Legume Research.2021.(44):634-640
M.I. Cayetano-Marcial, C.B. Peña-Valdivia, A. García Esteva, J.C. Jiménez Galindo, I.G. Galván Escobedo, D. Padilla Chacón daniel.padilla@colpos.mx
Address : CONACYT-Botánica, CONACyT- Colegio de Postgraduados. Carretera México-Texcoco, km 36.5, Montecillo, 56230, México.
Submitted Date : 8-10-2020
Accepted Date : 25-01-2021

Abstract

Background: Common bean (Phaseolus vulgaris L.) grain filling is vulnerable to drought and heat stress. The objective of the study was to evaluate the effect of humidity restriction, high night temperatures and their combination in common bean.
Methods: The plants were grown in pots at maximum field capacity (100% FC) until the grain filling began. Afterwards, maintained until harvest at: 1) 100% FC, 2) 50% FC at ambient day/night temperature (AT), 22.58°C/16.94°C, 3) 100% FC with high night temperature (HNT) 21.47°C and 4) 50% FC with HNT (combined stress). Evaluations included phenotypic assessment using red-green-blue color segmentation in: green (healthy), yellow (senescence) and brown (necrotic). 
Result: The combined stress in the cv. Rosa Bufa significantly and synchronously accelerated leaves and pods senescence. In contrast, in leaves of cv. OTI, the loss of green color began several days earlier than in pods. The effect of HNT and combined stress depends on common bean cultivar.

Keywords

Common bean Drought High night temperature Phenotyping Senescence Stay green

References

  1. Assefa, T., Beebe, S.E., Rao, I.M., Cuasquer, J.B., Duque, M.C., Rivera, M., Battisti, A. and Lucchin, M. (2013). Pod harvest index as a selection criterion to improve drought resistance in white pea bean. Field Crops Research. 148: 24-33. 
  2. Awasthi, R., Gaur, P., Turner, N., Vadez, V., Siddique, K. and Nayyar, H. (2017). Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop and Pasture Science. 68: 823-841.
  3. Bennett, E.J., Roberts, J.A. and Wagstaff, C. (2011). The role of the pod in seed development: strategies for manipulating yield. New Phytologist. 190: 838-853. 
  4. CIAT (Centro Internacional de Agricultura Tropical). (1982). Etapas de desarrollo de la planta de frijol común, Guía de estudio para ser usada como complemento de la unidad audiotutorial sobre el mismo tema (Serie 04SB-09.03) Cali, Colombia.
  5. Clavijo-Michelangeli, J.A., Bhakta, M., Gezan, S.A., Boote, K.J. and Vallejos, C.E. (2013). From flower to seed: identifying phenological markers and reliable growth functions to model reproductive development in the common bean (Phaseolus vulgaris L.). Plant Cell and Environment. 36: 2046-2058. 
  6. Escalante Estrada, J.A. and Kohashi-Shibata, J. (2015). El rendimiento y crecimiento de frijol. Manual para latoma de datos. Colegio de Postgraduados. Montecillo. Mpio. de Texcoco. 84 p. ISBN 868-839-108-5.
  7. Estrada, J.A., Estrada, V., Hernández, A., Molina, J.C. and Campos, A. (2004). OTI, a new dry bean cultivar for the valley of México. Revista Fitotecnia Mexicana. 27: 115-116. 
  8. FAO (2020). FAO food security statistics website. http://www.fao.org/economic/ess/food-security-statistics/en/).
  9. Fernandez-Gallego, J.A., Kefauver, S.C., Gutiérrez, N.A., Nieto-Taladriz, M.T. and Araus, J.L. (2018). Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images. Plant Methods. 14: 22. 
  10. Ganiga, J., Sharma, M. and Reddy. N. (2019). Phenotyping techniques for the selection of disease resistance in pigeonpea against Phytophthora cajani. Legume Research. DOI:10.18805/LR-4139.
  11. IPCC (2013). Climate Change 2013: The Physical Science Basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [(eds) Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., et al.,] (Cambridge: Cambridge University Press).
  12. Jiménez Galindo, J.C. and Acosta Gallegos, J.A. (2012). Caracterización de genotipos criollos de frijol Tepari (Phaseolus acutifolius A. Gray) y común (Phaseolus vulgaris L.) bajo temporal. Revista Mexicana de Ciencias Agrícolas. 3: 1565-1577.
  13. Jiménez Galindo, J.C. and Acosta Gallegos, J.A. (2013). Rendimiento de frijol común (Phaseolus vulgaris L.) y Tépari (Phaseolus acutifolius A. Gray) bajo el método riego-sequía en Chihuahua. Revista Mexicana de Ciencias Agrícolas. 4: 557-567.
  14. Joshi, M., Aggarwal, D. and Sanyal, A. (2017). Cultivar identification and diversity analysis based on morphological descriptors and image analysis in chickpea (Cicer arietinum L.). Legume Research. 41: 647-655.
  15. Khan, F. (2018). Salinity stress phenotyping for soybean (Glycine max L.) for Middle East Asia. Legume Research. 41: 551-556.
  16. Kim, J., Kim, J.H., Lyu, J.I., Woo, H.R. and Lim, P.O. (2018). New insights into the regulation of leaf senescence in Arabidopsis. Journal of Experimental Botany. 69: 787-799. 
  17. Montero-Tavera, V., Ruiz-Medrano, R. and Xoconostle-Cázares B. (2008). Systemic nature of drought-tolerance in common bean. Plant Signaling and Behavior. 3: 663-666. 
  18. Padilla-Chacón, D., Peña Valdivia, C.B., García-Esteva, A., Cayetano-Marcial, M.I. and Kohashi Shibata, J. (2019). Phenotypic variation and biomass partitioning during post-flowering in two common bean cultivars (Phaseolus vulgaris L.) under water restriction. South African Journal of Botany. 121: 98-104. 
  19. Quirós Vargas, J.J., Zhang, C., Smitchger, J.A., McGee, R.J. and Sankaran, S. (2019). Phenotyping of plant biomass and performance traits using remote sensing techniques in pea (Pisum sativum L.). Sensors (Basel). 19: 2031. 
  20. Salcedo, J.M. (2008). Guías para la regeneración de germoplasma: frijol común. In: Crop specific regeneration guidelines. [Dulloo M.E., Thormann I., Jorge M.A. and Hanson J., (eds.)], CGIAR System-wide Genetic Resource Programme (SGRP), Rome, Italy. 
  21. Sehgal, A., Sita, K., Siddique, K.H.M., Kumar, R., Bhogireddy, S., Varshney, R.K., Hanumantha Rao, B., Nair, R.M., Prasad, P.V.V. and Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields and nutritional quality. Frontiers in Plant Science. 9: 1705.
  22. Thomas, H. and Ougham, H. (2014). The stay-green trait. Journal of Experimental Botany. 65: 3889-3900.
  23. Yuan, W., Wijewardane, N.K., Jenkins, S., Bai, G., Ge, Y. and Graef, G.L. (2019). Early prediction of soybean traits through color and texture features of canopy RGB imagery. Scientific Reports. 9: 14089.
  24. Zhou, C., Han, L., Pislariu, C., Nakashima, J., Fu, C., Jiang, Q., Blancaflor, E.B., Tang, Y., Bouton, J.H., Udvardi, M., Xia, G. and Wang, Z.Y. (2011). From Model to Crop: Functional analysis of a ¨STAY-GREEN¨ gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiology. 157: 1483-1496.

Global Footprints