Loading...

Haploid Culture and Double Haploid Induction in Medicago sativa L. cv. XinJiangDaYe

DOI: 10.18805/LR-575    | Article Id: LR-575 | Page : 275-280
Citation :- Haploid Culture and Double Haploid Induction in Medicago sativa L. cv. XinJiangDaYe.Legume Research.2021.(44):275-280
Bo Xu, Rina Wu, Fang Tang, Cuiping Gao, Xia Gao, Fengling Shi xubo19900121@126.com
Address : College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.
Submitted Date : 2-07-2020
Accepted Date : 29-08-2020

Abstract

Background: Alfalfa (Medicago Sativa), a perennial cross-pollinated plant, is one of the most important forage crops in the world with commercial value and ecological significance. However, due to the complexity of its genome, varietal improvement is difficult. Therefore, generating genetically homozygous materials have greater significance for breeding. In the current study, we aimed to identify the best tissue culture conditions to obtain haploid plants and double haploid plants.
Methods: In this study, the haploid plants of alfalfa were obtained by combining tissue culture regeneration system with Flow cytometry. Different concentrations of colchicine were applied to the haploid plants using solid and liquid cultivation methods to determine the optimum conditions to obtain double haploid plants of Medicago Sativa L. cv. ‘XinJiangDaYe’. 
Result: Among the two colchicine cultivation methods tested, the doubling rate of regenerated plants obtained by liquid cultivation method was higher and the leaves developed under this system have the best doubling effect among the three explants tested. Optimal doubling conditions for alfalfa haploid (Medicago Sativa L. cv. ‘XinJiangDaYe’) were identified. The double haploid plant material generated from the current study could serve as a genetic resource for developing the hybrid combinations and for analyzing genetic linkage in alfalfa improvement programs.

Keywords

Colchicine Double haploid Doubling rate Haploid Medicago Sativa

References

  1. Chen, H.T., Zeng, Y., Yang, Y.Z., Huang, L.L., Tang, B.L., Zhang, H., Hao, F., Liu, W., Li, Y.H., Liu, Y.B., Zhang, X.S., Zhang, R., Zhang, Y.S., Li, Y.X., Wang, K., He, H., Wang, Z.K., Fan, G.Y., Yang, H., Bao, A.K., Shang, Z.H., Chen, J.H., Wnag, W., Qiu, Q. (2020). Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature communications. 11: 2494.
  2. Cui, N. (2017). Pollen culture of the three alfalfa varieties and its haploid identification. Master Thesis, Hohhot, in Inner Mongolia, China.
  3. Currah, L., Ockendon, D.J. (1987). Chromosome doubling of mature haploid Brussels sprout plants by colchicine treatment. Euphytica. 36: 167-173.
  4. Galbraith, D.W., Lambert, G.M., Macas, J., Dolezel, J. (2001). Analysis of nuclear DNA content and ploidy in higher plants. Current protocols in cytometry, Chapter 7.Unit 7.6.
  5. Galbraith, D.W., Harkins, K.R., Maddox, J.M., Ayres, N.M., Sharma, D.P., Firoozabady, E. (1983). Rapid flow cytometric analysis of the cell cycle in intact plant-tissues. Science. 220: 1049-1051.
  6. Ganga, M. and Chezhiyan, N. (2002). Influence of the antimitotic agents colchicine and oryzalin on in vitro regeneration and chromosome doubling of diploid bananas (Musa spp.). The Journal of Horticultural Science and Biotechnology. 77: 572-575.
  7. James, D.J., Mackenzie, K.A., Malhotra, S.B. (1987). The induction of hexaploidy in cherry rootstocks using in vitro regeneration techniques. Theoretical and applied genetics. 73: 589-94.
  8. Jiang, L., Jing, G.X., Li, X.Y., Wang, X.Q., Xing, Z., Deng, P.K., Zhao, R.G. (2015). Tissue culture characteristics of maize (Zea mays L.) haploid coleoptile sections. Genetics and molecular research. 14: 16265-16275.
  9. Joann, A.C., Maricel, P., Peggy, O. (2017). Haploid embryo production in rice and maize induced by PsASGR - BBML transgenes. Plant Reproduction. 30: 41-52.
  10. Karen, K.P., Per, H., Kell, K. (2003). Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis. Plant Cell, Tissue and Organ Culture. 73: 137-146.
  11. Katarzyna, G., Stanis³aw, J., Zygmunt, K. (2010). Impact of colchicine application during callus induction and shoot regeneration on micropropagation and polyploidisation rates in two Miscanthus species. In Vitro Cellular & Developmental Biology - Plant. 46: 161-171.
  12. Li, H.Y., Liu, M., Song, X.H., Han, Y.P., Wu, X.X., Zhang, D.Y., Li, W.B. (2010). Effect of 6-BA and 2, 4-D on soybean transformation. Journal of Northeast Agricultural University (English Edition). 17: 16-19.
  13. Loureiro, J., Rodriguez, E., Dolezel, J., Santos, C. (2006). Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Annals of botany. 98: 679-89.
  14. Mori, S., Yamane, T., Yahata, M., Shinoda, K., Murata, N. (2016). Chromosome doubling in Limonium bellidifolium (Gouan) Dumort. by colchicine treatment of seeds. The Horticulture Journal. 85: 366-371. 
  15. Riday, H. and Brummer, E. C. (2002). Forage yield heterosis in alfalfa. Crop Science. 42: 716-723.
  16. Rong, L., Min, D.D., Chen, L.J., Chen, C.Y., Hu, X.W. (2017). Hydropriming accelerates seed germination of Medicago sativa under stressful conditions: A thermal and hydrotime model approach. Legume Research. 40: 741-747.
  17. Schedel, S., Pencs, S., Hensel, G., Müller, A., Rutten, T., Kumlehn, J. (2016). RNA-Guided Cas9-Induced mutagenesis in tobacco followed by efficient genetic fixation in doubled haploid plants. Frontiers in Plant Science. 7: 1995.
  18. Sharma, P., Chaudhary, H.K., Manoj, N.V., Kumar, P. (2019). New protocol for colchicine induced efficient doubled haploidy in haploid regenerants of tetraploid and hexaploid wheats at in vitro level. Cereal Research Communications. 47: 356-368.
  19. Wang, L., Shi, F.L., Bian, X.Y., Yi, F.Y., Gao, X. (2013). Analyzing the mutative effects of Medicago ruthenica (L.) Sojak. cv. Zhilixing treatde by colchicine. Seed. 32: 50-53.
  20. Xu, B., Shi, F.L., Gao, X., Wu, R.N., Yang, Y.T., Yang, J., Wang F. (2019). Development of diploid alfalfa cutting propagation and transplanting technology and analysis of inbred pod setting percentage. Chinese Journal of Grassland. 41: 67-71-115.
  21. Yin, S. Y., Wang, Y. R., Nan Z. B. (2018). Genetic diversity studies of alfalfa germplasm (Medicago sativa L. subsp. sativa) of United States origin using microsatellite analysis. Legume Research. 41: 202-207.
  22. Zagorska, N., Dimitrov, B. (1995). Induced androgenesis in alfalfa (Medicago sativa L.). Plant Cell Reports. 14: 249-252.
  23. Zhang, H.H., Li, X., Nan, X., Sun, G.Y., Sun, M.L., Cai, D.J., Gu, S.Y. (2017). Alkalinity and salinity tolerance during seed germination and early seedling stages of three alfalfa (Medicago sativa L.) cultivars. Legume Research. 40: 853-858.

Global Footprints