Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 44 issue 2 (february 2021) : 202-206

Commercial Lentils (Lens culinaris) Provide Antioxidative and Broad-spectrum Anti-cancerous Effects

Sudha Kiran, Joel B. Johnson, Janice S. Mani, Andrew Portman, Trent Mizzi, Mani Naiker
1School of Health and Life Sciences, Federation University Australia, Ballarat, VIC, Australia.
  • Submitted18-03-2020|

  • Accepted03-08-2020|

  • First Online 09-11-2020|

  • doi 10.18805/LR-557

Cite article:- Kiran Sudha, Johnson B. Joel, Mani S. Janice, Portman Andrew, Mizzi Trent, Naiker Mani (2020). Commercial Lentils (Lens culinaris) Provide Antioxidative and Broad-spectrum Anti-cancerous Effects. Legume Research. 44(2): 202-206. doi: 10.18805/LR-557.
Background: Interest is growing surrounding functional foods, which provide health benefits in addition to nutritional value. In particular, there is a focus on pulse crops which contain high levels of polyphenolics, such as lentils. 
Methods: In this study, polyphenols were extracted from five L. culinaris varieties and characterized by both their antioxidant profile and cytotoxic activity. 
Result: Hulled varieties had a high content of secondary metabolites (>70 mg GAE/g), while all varieties demonstrated high antioxidant potential (1570-2020 Oxygen Radical Absorbance Capacity index). Furthermore, all extracts showed significant cytotoxicity against H9C2, HepG2, A549 and Calu-1 cancer cell lines. This recommends further investigation into the specific compounds present in L. culinaris, which could potentially be exploited for their anti-cancer activity. 
  1. Agil, R., Gaget, A., Gliwa, J., Avis, T.J., Willmore, W.G., Hosseinian, F. (2013). Lentils enhance probiotic growth in yogurt and provide added benefit of antioxidant protection. LWT - Food Science and Technology. 50: 45-49.
  2. Amaani, R. and Dwira, S. (2018). Phytochemical content an in vitro toxicity of Glycine soja ethanol extract on the A549 Lung cancer line cell. Journal of Physics: Conference Series. IOP Publishing, 032042.
  3. Beniwal, P. and S. Jood (2014). Total phenolic content and antioxidant activity of by-products from cereal and legume milling industries. Asian Journal of Dairy and Food Research. 33: 307-310.
  4. Busambwa, K., Sunkara, R., Diby, N., Offei-Okyne, R., Boateng, J., Verghese, M. (2016). Cytotoxic and apoptotic effects of sprouted and non-sprouted lentil, green and yellow split-peas. International Journal of Cancer Research. 12: 51-60.
  5. Carlsen, M.H., Halvorsen, B.L., Holte, K., Bøhn, S.K., Dragland, S., Sampson, L., Willey, C., Senoo, H., Umezono, Y., Sanada, C. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal. 9: 3.
  6. Cassidy, L., Fernandez, F., Johnson, J.B., Naiker, M., Owoola, A.G., Broszczak, D.A. (2020). Oxidative stress in Alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complementary Therapies in Medicine. 49: 102294.
  7. Djordjevic, T.M., Šiler-Marinkovic, S.S., Dimitrijevic-Brankovic, S.I. (2011). Antioxidant activity and total phenolic content in some cereals and legumes. International Journal of Food Properties. 14:175-184.
  8. Ganesan, K. and Xu, B. (2017). Polyphenol-rich lentils and their health promoting effects. International Journal of Molecular Sciences. 18: 2390.
  9. Guleria, S., Tiku, A.K., Singh, G., Koul, A., Gupta, S., Rana, S. (2013). In vitro antioxidant activity and phenolic contents in methanol extracts from medicinal plants. Journal of Plant Biochemistry and Biotechnology. 22: 9-15.
  10. Gutiérrez-Venegas, G., Guadarrama-Solís, A., Muñoz-Seca, C., Arreguín-Cano, J.A. (2015). Hydrogen peroxide-induced apoptosis in human gingival fibroblasts. International Journal of Clinical and Experimental Pathology. 8:15563.
  11. Johnson, J., Collins, T., Power, A., Chandra, S., Portman, D., Blanchard, C., Naiker, M. (2020a). Antioxidative properties and macrochemical composition of five commercial mungbean varieties in Australia. Legume Science. 2:e27.
  12. Johnson, J., Collins, T., Skylas, D., Quail, K., Blanchard, C., Naiker, M. (2020b). Profiling the varietal antioxidative content and macrochemical composition in Australian faba beans (Vicia faba L.). Legume Science. 2:e28.
  13. Keene, M.R., Heslop, I.M., Sabesan, S.S., Glass, B.D. (2019). Complementary and alternative medicine use in cancer: A systematic review. Complementary Therapies in Clinical Practice. 35: 33-47.
  14. Khansari, N., Shakiba, Y., Mahmoudi, M. (2009). Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Patents on Inflammation and Allergy Drug Discovery. 3:73-80.
  15. Khazaei, H., Subedi, M., Nickerson, M., Martínez-Villaluenga, C., Frias, J., Vandenberg, A. (2019). Seed protein of lentils: Current status, progress and food applications. Foods. 8: 391.
  16. Margier, M., Georgé, S., Hafnaoui, N., Remond, D., Nowicki, M., Du Chaffaut, L., Amiot, M.-J., Reboul, E. (2018). Nutritional composition and bioactive content of legumes: Characterization of pulses frequently consumed in France and effect of the cooking method. Nutrients, 10:1668.
  17. Moïse, J.A., Han, S., Gudynaitê-Savitch, L., Johnson, D.A., Miki, B.L. (2005). Seed coats: structure, development, composition and biotechnology. In Vitro Cellular and Developmental Biology-Plant. 41:620-644.
  18. Özgen, M., Scheerens, J.C., Reese, R.N., Miller, R.A. (2010). Total phenolic, anthocyanin contents and antioxidant capacity of selected elderberry (Sambucus canadensis L.) accessions. Pharmacognosy Magazine. 6:198.
  19. Pharmawati, M., Wijaya, I.M.A.S. (2019). Changes in growth, biochemical components and antioxidant genes expression in rice seedling (Oryza sativa L.) cultivar ‘IR64’ under salt stress. Indian Journal of Agricultural Reseach. 53(4): 478-482.
  20. Reuter, S., Gupta, S.C., Chaturvedi, M.M., Aggarwal, B.B. (2010). Oxidative stress, inflammation and cancer: How are they linked? Free Radical Biology and Medicine. 49:1603-1616.
  21. Segawa, K. and Nagata, S. (2015). An apoptotic ‘eat me’ signal: phosphatidylserine exposure. Trends in Cell Biology. 25: 639-650.
  22. U.S. Cancer Statistics Working Group. (2019). U.S. Cancer Statistics Data Visualizations Tool, based on November 2018 submission data (1999-2016) [Online]. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Available: www.cdc.gov/cancer/dataviz [Accessed 11 Feb 2020].
  23. Xu, B. and Chang, S.K.C. (2012). Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines. Food Chemistry. 134:1287-1296.
  24. Yu, L., Perret, J., Davy, B., Wilson, J., Melby, C. (2002). Antioxidant properties of cereal products. Journal of Food Science. 67: 2600-2603.

Editorial Board

View all (0)