Loading...

Edaphic and Foliar Biofortification of Common Black Bean (Phaseolus vulgaris L.) with Iron

DOI: 10.18805/LR-553    | Article Id: LR-553 | Page : 192-196
Citation :- Edaphic and Foliar Biofortification of Common Black Bean (Phaseolus vulgaris L.) with Iron.Legume Research.2021.(44):192-196
J.W. Felix, E. Sánchez-Chávez, E. de-la-Cruz-Lázaro, C. Márquez-Quiroz efrain.delacruz@ujat.mx
Address : División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabaco. Km. 25. Carretera Villahermosa-Teapa. CP. 86290. Centro, Tabasco, México.
Submitted Date : 24-02-2020
Accepted Date : 28-04-2020

Abstract

Background: Biofortification is the process by which the nutritional quality of food crops is improved through agronomic practices, conventional plant breeding, or modern biotechnology. The objective in this work was to determine the effect of iron on mineral content, proximal composition, bioactive compound content and antioxidant activity in the bean grain.
Methods: In this present work, we biofortificated plants of common bean (Phaseolus vulgaris L.), with doses of iron sulfate (0, 0.25, and 0.50 g) and foliar iron chelate (0, 25, 50 and 100 µM). In the grain content mineral (iron, zinc, copper and nickel), proximal composition (moisture, ash, crude fiber, fat, protein, carbohydrates and energy), total phenols, flavonoids, anthocyanins and antioxidant activity were determined. 
Result: Edaphic and foliar biofortification increased iron content in the grain. All treatment combinations containing some edaphic or foliar doses of iron increased levels of ash fat, protein, crude fiber, total phenols and anthocyanins, and decreased carbohydrate content and energy. Nine treatment combinations, including the control, possessed the highest antioxidant activities (84.96-89.76%).

Keywords

Anthocyanins Antioxidant activity Bioactive compounds Crude fiber Phenols Protein

References

  1. AOAC. (2000). Official methods of analysis of AOAC International. 17th ed. Association of Official Analytical Chemist. Oakville, MD, USA.
  2. Armendáriz-Fernández, K.V., Herrera-Hernández, I.M., Muñoz-Márquez, E., Sánchez, E. (2019). Characterization of bioactive compounds, mineral content and antioxidant activity in bean varieties grown with traditional methods in Oaxaca, Mexico. Antioxidants. 8: 26. Doi: 10.3390/    antiox8010026.
  3. Brigide, P., Canniatti-Brazaca, S.G., Silva, M.O. (2014). Nutritional characteristics of biofortified common beans. Food Science and Technology. 34(3):493-500.
  4. Cakmak, I., Pfeiffer, W.H., McClafferty, B. (2010). Review: Biofortification of durum wheat with zinc and iron. Cereal Chemistry. 87(1):10-20.
  5. Cevallos-Casals, B.A. and Cisneros-Zevallos, L. (2010). Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chemistry. 119(4): 1485-1490.
  6. Chávez-Mendoza, C. and Sánchez, E. (2017). Bioactive compounds from mexican varieties of the common bean (Phaseolus vulgaris): Implications for health. Molecules. 22. Doi: 10.3390/molecules22081360
  7. Connorton, J.M. and Balk, J. (2019). Iron biofortification of staple crops: Lessons and challenges in plant genetics. Plant Cell Physiology. 60(7): 1447-1456.
  8. Fernández, V., Sotiropoulos, T., Brown, P. (2015). Fertilización foliar: Principios científicos y práctica de campo. Primera Edición. Asociación Internacional de la Industria de Fertilizantes. Paris, Francia. pp. 156.
  9. G³owacka, A., Klikocka, H., Onuch, J. (2015). Content of zinc and iron in common bean seeds (Phaseolus vulgaris L.) in different weed control methods. Journal of Elementology. 20(2): 293-30.
  10. INIFAP. (2017). Agenda técnica agrícola de Tabasco. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. México. pp 140.
  11. Lattanzio V. (2013). Phenolic compounds: Introduction. In: Handbook Natural Products [Ramawat K. and Mérillon J.M. (eds)]. Springer, Berlin, Heidelberg. pp. 1543-1580.
  12. Márquez-Quiroz, C., De la Cruz-Lázaro, E., Osorio-Osorio, R., Sánchez-Chávez, E. (2015). Biofortification of cowpea beans with iron: iron´s influence on mineral content and yield. Journal of Soil Science and Plant Nutrition. 15(4): 839-847.
  13. Nissar, R., Zahida, R., Kanth, R.H., Manzoor, G., Shafeeq, R., Ashaq, H., Waseem, R., Bhat, R.A., Bhat, M.A, Tahir, S. (2019). Agronomic biofortification of major cereals with zinc and iron- A review. Agricultural Reviews. 40(1): 21-28.
  14. Perron, N.R. and Brumaghim, J.L. (2009). A Review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochemistry and Biophysics. 53: 75-100.
  15. Petry, N., Egli, I., Gahutu. J.B., Tugirimana, P.L., Boy, E., Hurrell, R. (2014). Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. The Journal of Nutrition. 144(11): 1681-1687. 
  16. Rani, T.S., Kumar, G.A., Sravanti, K., Kumar, C.V.S., Maheswaramma, S., Ramesh, S., Parimal, M. (2019). Heterosis effects on genetic biofortification of grain iron and zinc in pearl millet (Pennisetum glacum L.). Indian Journal of Agricultural Research. 53(6): 655-661.
  17. Shukla, U.N. and Lata, M.M. (2018). Biofortification: Golden way to save life from micronutrient deficiency- A review. Agricultural Reviews. 39(3): 202-209.
  18. Sida-Arreola, J.P., Sánchez-Chávez, E., Ávila-Quezada, G.D., Zamudio-Flores, P.B., Acosta-Muñíz, C.H. (2015). Iron biofortification and its impact on antioxidant system, yield and biomass in common bean. Plant Soil Environment. 61(12):573-576.
  19. Sperotto, R.A. and Ricachenevsky, F.K. (2017). Common bean Fe biofortification using model species’ lessons. Frontiers in Plant Sciences. 8: Article 2187. Doi: 10.3389/fpls.2017. 02187.
  20. Wrolstad, R.E. (1976). Color and pigment analyses in fruit products. Oregon State University. Station Bulletin. 624: 1-7.
  21. Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 64(4): 555–559.
  22. Zieliñska-Dawidziak, M. (2015). Plant ferritin-A source of iron to prevent its deficiency. Nutrients. 7(2): 1184-1201. 

Global Footprints