Molecular Characterization of Aflatoxin Biosynthesis Genes of Aspergillus flavus from Peanuts Production Area 

DOI: 10.18805/LR-508    | Article Id: LR-508 | Page : 609-614
Citation :- Molecular Characterization of Aflatoxin Biosynthesis Genes of Aspergillus flavus from Peanuts Production Area.Legume Research-An International Journal.2019.(42):609-614
I. Lavkor lavkor@gmail.com
Address : Biological Control Research Institute, Kisla Street, 01321, Yuregir, Adana, Turkey.
Submitted Date : 22-06-2019
Accepted Date : 29-08-2019

Abstract

In this study, molecular analysis of (100%) all fungal isolates, which were sampled from soil and air besides from infected peanut plants in the peanut planting area, were identified in â-tubulin gene by Polymerase Chain Reaction (PCR). PCR products of fungal isolates were restricted by BglII enzyme within Restriction Fragment Length Polymorphism (RFLP). The intergenic spacer (IGS) region for aflatoxin biosynthesis genes (aflJ-aflR) were determined in 254 (78.2%) A. flavus isolates using PCR-RFLP. Selected 100 isolates were detected as A. flavus by â-tubulin sequence gene fragments and comparisons of sequence showed 96–100% similarity. 254 out of 325 isolates contained aflatoxin biosynthesis genes (aflJ-aflR), whereas 213 out of 254 isolates produced aflatoxin. The results acquired in study remarked that A. flavus was the species responsible for aflatoxin contamination. Aflatoxin gene cluster in populations can be advantage for comprehension of the toxicological risk as well as the election of biocontrol isolates.

Keywords

Air Aspergillus flavus â-tubulin IGS Infected peanut plant PCR-RFLP Soil

References

  1. Abbas, H.K., Zablotowicz, R.M., Horn, B.W., Phillips, N.A., Johnson, B. J., Jin, X. and Abel, C.A. (2011). Comparison of major biocontrol strains of non-aflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize. Food Addit Contam- Part A Chem. Anal. Control Expo Risk Assess. 28: 198-208.
  2. Antilla, L. and Cotty, P.J. (2002). The ARS-ACRPC partnership to control aflatoxin in Arizona cotton: current status. Mycopathologia. 155: 64.
  3. AOAC, (2002). Official Method 991.31. Aflatoxins in corn, raw peanuts, and peanut butter immunoaffinity column (AflaTest) method. AOAC Int. 42: 2-18. 
  4. Chang, P.K., Horn, B.W. and Dorner, J.W. (2005). Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet. Biol. 42: 914-923.
  5. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D.G. and Thompson, J.D. (2003). Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res. 31: 3497-500. 
  6. Ehrlich, K.C., Montalbano, B.G. and Cotty, P.J. (2003). Sequence comparison of aflR from different Aspergillus species provides evidence for variability in regulation of aflatoxin production. Fungal Genet Biol. 38: 63–74.
  7. Ehrlich, K.C., Kobbeman, K., Montalbano, B.G. and Cotty, P.J. (2007). Aflatoxin-producing Aspergillus species from Thailand. Int. J. Food Microbiol. 114: 153-159.
  8. Gonzalez-Salgado, A., Gonzales-Jaen, T., Vazquez, C. and Patino, B. (2008) Highly sensitive PCR-based detection method specific for Aspergillus flavus in wheat flour. Food Addit Contam. 25: 758-764.
  9. Khoury, A., Atoui, A., Rizk, T., Lteif, R., Kallassy, M. and Lebrihi, A. (2011). Differentiation between Aspergillus flavus and Aspergillus parasiticus from pure culture and aflatoxin contaminated grapes using PCR-RFLP analysis of aflR-aflJ intergenic spacer. J. Food Sci. 76: 247-253.
  10. Kumar, S., Stecher, G., Peterson, D. and Tamura, K. (2012). Mega cc: computing core of molecular evolutionary genetics analysis program for automated anditerative data analsis. Bionformatics. 28: 2685-2686.
  11. Kumar, M., Kumar, H., Kamal Topno R. and Kumar J. (2019). Analysis of impact of anaerobic condition on the aflatoxin production in Aspergillus parasiticus Speare. Agricultural Science Digest. 39: 75-78.
  12. Lereau, M., Gouas, D., Villar, S., Besaratinia, A. and Hautefeuille, A. (2012). Interactions between hepatitis B virus and aflatoxin B1 effects on p53 induction in Hepa RG cells. J. Gen. Virol. 93: 640-650. 
  13. Lui, D., Caloe, C., Biard, R. and Pedersen, J. (2000). Rapid mini preparation of fungal DNA for PCR. J. Clin. Microbiol. 38: 471.
  14. Mangal, M., Bansal, S. and Sharma, M. (2014). Macro and micromorphological characterization of different Aspergillus isolates. Legume Res.-An International Journal. 37: 372-378.
  15. Midorikawa, G.E.O., Sousa, M L.M., Silva, O.F., Dias, J.S.A., Kanzaki, L.I.B., Hanada, R.E., et al. (2014). Characterization of Aspergillus species on Brazil nut from the Brazilian Amazonian region and development of a PCR assay for identification at the genus level. BMC Microbiol. 14: 1-9.
  16. Mohankumar, M., Vijayasamundeeswari, A., Karthikeyan, M., Mathiyazhagan, S., Paranidharan V. and Velazhahan, R. (2010). Analysis of molecular variability among isolates of Aspergillus flavus by PCR-RFLP of the ITS Regions of rDNA. J. Plant Prot. Res. 50: 446-451.
  17. Raphaël, K.J., Gnonlonfin, B.G.J., Harvey, J., Wainaina, J., Wanjuki, I., Skilton, R.A. and Teguia, A. (2013). Mycobiota and toxigenecity profile of Aspergillus flavus recovered from food and poultry feed mixtures in Cameroon. JAPSC. 2: 98-107.
  18. Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetictrees. Mol. Biol. Evol. 4: 406-425.
  19. Samson, R.A., Varga, J., Witiak, S.M. and Geiser, D.M. (2007). The species concept in Aspergillus: recommendations of an international panel. Stud. Mycol. 59: 71–73. 
  20. Singh, R., Rai, T.S., Sharma, N.S., Arora, A.K. and Kaur, P. (2107). Evaluation of a Real time polymerase chain reaction assay for the detection of aflatoxin/sterigmatocystin producing strains of Aspergillus spp. Indian J. Ani. Res. 51: 676-678.
  21. Somashekar, D., Rati, E.R., Anand, S. and Chandrashekar, A. (2004). Isolation, enumeration and PCR characterization of aflatoxigenic fungi from food and feed samples in India. Food Microbiol. 21: 809–813. 

Global Footprints