Loading...

Reference Genes for Quantitative Real-Time PCR Analysis of Gene Expression in Mung Bean under Abiotic Stress and Cercospora canescens Infection

DOI: 10.18805/LR-507    | Article Id: LR-507 | Page : 646-651
Citation :- Reference Genes for Quantitative Real-Time PCR Analysis of Gene Expression in Mung Bean under Abiotic Stress and Cercospora canescens Infection.Legume Research.2021.(44):646-651
X.W. Ke, L.H. Yin, J. Xu, W.N. Sun, X.D. Xu, Y.X. Guo, Y.H. Zuo kexylh@yeah.net
Address :
Heilongjiang Bayi Agricultural University, National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Daqing 163319, China.
Submitted Date : 13-06-2019
Accepted Date : 29-12-2019

Abstract

The objective of the study was to identify suitable reference genes that can be used for quantitative real-time PCR (qPCR) analysis in mung bean (Vigna radiata). Therefore, 10 potential reference genes were selected and the results showed that ubiquitin-conjugating enzyme was suitable as reference under drought and pathogen infection stress; elongation factor 1-á was the most stable gene under waterlogging; and actin performed the best under saline stress. These selected reference genes were further confirmed by analysis of the expression profiles of catalase and peroxidase under waterlogging. Our results will contribute to the improvement of the accuracy of gene expression evaluation in mung bean.

Keywords

Drought Fungal infection qPCR Saline Vigna radiata Waterlogging

References

  1. Andersen, C.L., Jensen, J.L., Orntoft, T.F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research. 64: 5245-5250.
  2. Auler, P.A., Benitez, L.C., do Amaral, M.N., Vighi, I.L., Dos Santos Rodrigues, G, da Maia, L.C., Braga, E.J. (2017). Evaluation of stability and validation of reference genes for RT-qPCR expression studies in rice plants under water deficit. Journal of Applied Genetics. 58(2): 163-177.
  3. Booker, H.M. and Umaharan, P. (2007). Identification of resistance to Cercospora leaf spot of cowpea. European Journal of Plant Pathology. 118: 401-410.
  4. Chen, X., Mao, Y., Huang, S., Ni, J., Lu, W., Hou, J. (2017). Selection of suitable reference genes for quantitative real-time PCR in sapium sebiferum. Frontiers in Plant Science. 8: 637.
  5. Duan, M., Wang, J., Zhang, X., Yang, H., Wang, H., Qiu, Y., Song, J., Guo, Y., Li, X. (2017). Identification of optimal reference genes for expression analysis in radish (Raphanus sativus L.) and its relatives based on expression stability. Frontiers in Plant Science. 8: 1605.
  6. Duraimurugan, P. and Tyagi, K. (2014). Pest spectra, succession and its yield losses in mungbean and urdbean underchanging climatic scenario. Legume Research. 37(2): 212.
  7. Dutta, P. and Bera, A. K. (2014). Effect of NaCl salinity on seed germination and seedling growth of mungbean cultivars. Legume Research. 37(2): 161.
  8. Gokulakrishnan, J., Kumar, B. S., Prakash, M. (2012). Studies on genetic diversity in mung bean (Vigna Radiata L.). Legume Research. 35(1): 50-52.
  9. Guénin, S., Mauriat, M., Pelloux, J., Wuytswinkel, O.V., Bellini, C., Gutierrez, L. (2009). Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. Journal of Experimental Botany. 60: 48.
  10. Hanumantharao, B., Nair, R.M., Nayyar, H. (2016). Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Frontiers in Plant Science. 7: 957.
  11. Kang, Y.J., Kim, S.K., Kim, M.Y., Lestari, P., Kim, K.H., Ha, B.,Jun, T.H., Hwang W.J., Lee T., Shim S., Yoon, M., Jang, Y.E., Han K.S., Taeprayoon, P., Yoon, N.R., Somta P., Tanya P., Kim, K.S., Gwag, J., Moon, J., Lee, Y., Park, B., Bombarely, A., Doyle, J.J.D., Jackson, S., Schafleitner, R., Srinives, P., Varshney, R.K.V., Lee, S. (2014). Genome sequence of mungbean and insights into evolution within Vigna species. Nature Communications. 5: 5443.
  12. Li, J., Han, X., Wang, C., Qi, W., Zhang, W., Tang, L. Zhao, X. (2017). Validation of suitable reference genes for RT-qPCR data in Achyranthes bidentata blume under different experimental conditions. Frontiers in Plant Science. 8: 776.
  13. Li, Q., Jeff, S. and John, E.B. (2012). Evaluation of Reference Genes for Real-Time Quantitative PCR Studies in Candida Glabrata Following Azole Treatment. BMC Molecular Biology. 13 (1): 22.
  14. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25: 402-408.
  15. Manjunath, B., Jayaram, N., Muniyappa, V., Prameela, H. (2013). Status of yellow mosaic virus and whitefly bemisia tabaci biotypes on mungbean in southern karnataka. Legume Research. 36(1): 62-66.
  16. Mondal, M.M.A., Rahman, M.A., Akter, M.B., Fakir, M.S.A. (2011). Effect of foliar application of nitrogen and micronutrients on growth and yield in mungbean. Legume Research. 34(3): 166-171.
  17. Nasrollahi, V., Asghar, M., Khosro, P., Sonbol, N., Rahim, M. (2014). The effect of drought stress on the expression of key genes involved in the biosynthesis of triterpenoid in liquorice (Glycyrrhiza glabra). Phytochemistry. 103: 32-37.
  18. Parelle, J., Brendel, O., Catherine B., Berveiller, D., Dizengremel, P., Jolivet, Y. (2006). Differences in morphological and physiological responses to water-logging between two sympatric oak species (quercus petraea [matt.] liebl. quercus robur l.). Annals of Forest Science. 63(8): 849-    859.
  19. Pfaffl, M.W., Tichopad, A., Prgomet, C., Neuvians, T.P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters. 26: 509-515.
  20. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology. 3(7): research0034.
  21. Walling J.G., Zalapa L.A., Vinje M.A. (2018). Evaluation and selection of internal reference genes from two- and six-row U.S. malting barley varieties throughout micromalt ing for use in RT-qPCR. PloS ONE. 13(5): e0196966.
  22. Wong, M.L. and Medrano, J.F. (2005). Real-time PCR for mRNA quantitation. BioTechniques. 39: 75-85.
  23. Xie, F., Xiao, P., Chen, D., Xu, L., Zhang, B. (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology. 80: 75-84.
  24. Zang, H., Yang, X., Feng, X., Qian, X., Hu, Y., Ren, C., Zeng, Z. (2015). Rhizodeposition of nitrogen and carbon by mungbean (Vigna radiata L.) and its contribution to intercropped oats (Avena nuda L.). PLoS ONE. 10(3): e0121132.
  25. Zhang, J., Chen L., Qiao L., Huang L., Li M. (2010). Characteristics and evaluation of salinization of different soil types in daqing city. Journal of Northeast Forestry University. 38(7): 119-122.

Global Footprints