Overexpression of the StP5CS gene promotes nodulation and nitrogen fixation in vegetable soybean under drought stress

DOI: 10.18805/LR-490    | Article Id: LR-490 | Page : 603-608
Citation :- Overexpression of the StP5CS gene promotes nodulation and nitrogen fixation in vegetable soybean under drought stress.Legume Research-An International Journal.2019.(42):603-608
X.X. Wang, F. Gao, S.P. Yang, J.Y. Gai and Y.L. Zhu ylzhu@njau.edu.cn
Address : National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210 095, China.
Submitted Date : 8-04-2019
Accepted Date : 11-08-2019

Abstract

The StP5CS (GenBank accession number: JN606861) T6 homozygous transgenic lines (HTLs) of vegetable soybean [Glycine max (L.) Merrill] were grown using vermiculite pot culture to determine whether StP5CS overexpression would enhance nodulation and symbiotic nitrogen fixation (SNF) in two T6 HTLs (17W-1, 17W-2) under drought conditions. The growth performance, nodule development and seed weight of T6 HTLs were significantly better than those of wild type (WT) plants. The proline levels in various tissues of T6 HTLs were higher than WT plants. The concentrations of total ureide, total N, leghemoglobin (Lb) and the activity of glutamine synthetase (GS, EC 6.3.1.2) in the T6 HTLs were significantly increased. Moreover, the relative expression levels of five key nodulation- and SNF-associated genes (i.e., GmENOD40-1, GmENOD40-2, GmLba, GmGS1â1 and GmGS1â2) were significantly higher in T6 HTLs. In conclusion, overexpression of StP5CS enhances nodulation and SNF in transgenic vegetable soybean under drought stress conditions.

Keywords

Drought stress Nitrogen fixation Nodulation StP5CS gene Vegetable soybean

References

  1. Amela, B., Sihem, T., Faiza, O. and Mohamed, O.S. (2018). Characterization of rhizobia from root nodule and rhizosphere of Vicia faba in Algeria. Legume Res. 41: 624-628.
  2. Bates, L.S., Waldren, R.P. and Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil. 39: 205-207.
  3. Biabani, A. and Sajadi, S. J. (2018) Effect of moisture content on biophysical characteristics of chickpea cultivars. Legume Res. 41: 432-435.
  4. Broughton, W.J. and Dilworth, M.J. (1971). Control of leghaemoglobin synthesis in snake beans. Biochem J. 125: 1075-1080.
  5. Cabeza, R.A., Liese, R., Lingner, A., Von, S.I., Neumann, J., Salinas-Riester, G., Pommerenke, C., and Schulze, J. (2014). RNA-seq transcriptome profiling reveals that Medicago truncatula nodules acclimate N2 fixation before emerging P deficiency reaches the nodules. J Exp Bot. 65: 6035-6048.
  6. Cai, H., Xie, W. and Lian, X. (2013). Comparative analysis of differentially expressed genes in rice under nitrogen and phosphorus starvation stress conditions. Plant Mol Biol Rep. 31: 160-173.
  7. diCenzo, G.C., Zamani, M., Cowie, A. and Finan, T.M. (2015). Proline auxotrophy in Sinorhizobium Meliloti results in a plant-specific symbiotic phenotype. Microbiology. 161: 2341-2351.
  8. Duran, V.A. and Todd, C.D. (2012). Four allantoinase genes are expressed in nitrogen-fixing soybean. Plant Physiol Bioch. 54: 149-155.
  9. Gian, L., Yumi, C., Yi, J.Y., Jongwook, C., Myungchul, L., Ma, K.H., Sokyoung, L., Jinwoong, C. and Jungro, L. (2014). Genetic diversity and population structure of Korean soybean collection using 75 microsatellite markers. Korean J Cropence Sci. 59: 492-497.
  10. Herridge, D.F. (1982). Relative abundance of ureides and nitrate in plant tissues of soybean as a quantitative assay of nitrogen fixation. Plant Physiol. 70: 1-6.
  11. Kaur, G. and Asthir, B. (2015). Proline: a key player in plant abiotic stress tolerance. Biol Plantarum. 59: 609-619.
  12. Kim, G.B. and Nam, Y.W. (2013). A novel Ä(1)-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. J Plant Physiol. 170: 291-302.
  13. Kouchi, H. and Hata, S. (1993). Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet. 238: 106-119.
  14. Kusvuran, S. and Dasgan, H.Y. (2017) Effects of drought stress on physiological and biochemicalchanges in Phaseolus vulgaris L. Legume Res. 40: 55-62.
  15. Le, D.T., Aldrich, D.L., Valliyodan, B., Watanabe, Y., Ha, C.V., Nishiyama, R., Guttikonda, S.K.,et al. (2012). Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions. Plos One. 7: e46487. 
  16. Libault, M., Thibivilliers, S., Bilgin, D.D., Radwan, O., Benitez, M., Clough, S.J. and Stacey, G. (2008). Identification of four soybean reference genes for gene expression normalization. Plant Genome. 1: 44-54.
  17. Marino, D., Frendo, P., Ladrera, R., Zabaiza, A., Puppo, A., Arrese-lgor, C. and González, E.M. (2007). Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol. 143: 1968-1974.
  18. Masalkar, P., Wallace, I.S., Jin, H.H. and Roberts, D.M. (2010). Interaction of cytosolic glutamine synthetase of soybean root nodules with the C-terminal domain of the symbiosome membrane nodulin 26 aquaglyceroporin. Plant Physiol. 143: 1968-1974.
  19. Morais, M.C., Panuccio, M.R., Muscolo, A. and Freitas, H. (2012). Salt tolerance traits increase the invasive success of Acacia longifolia in Portuguese coastal dunes. Plant Physiol Bioch. 55: 60-65.
  20. Pathan, S.M., Lee, J., Sleper, D.A., Fritschi, F.B., Sharp, R.E., Carter Jr, T.E., Nelson, R.L., King, C.A., Schapaugh, W.T., Ellersieck, M.R., Nguyen, H.T. and Shannon, J.G. (2014). Two soybean plant introductions display slow leaf wilting and reduced yield loss under drought. J Agron Crop Sci. 200: 231-236.
  21. Riley, I.T. and Dilworth, M.J. (2010). Cobalt requirement for nodule development and function in Lupinus-angustifolius L. New Phytol. 100: 347-359.
  22. Schmittgen, T.D. and Livak, K.J. (2008). Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 3: 1101-1108.
  23. Serraj, R., Sinclair, T.R. and Purcell, L.C. (1999). Symbiotic N2 fixation response to drought. J Exp Bot. 50: 143-155.
  24. She, Q., Sandal, N.N., Stougaard, J. and Marcker, K.A. (1993). Comparative sequence analysis of cis elements present in Glycine max L. leghemoglobin lba and lbc3 genes. Plant Mol Biol. 22: 931-935.
  25. Shimoda, Y., Shimoda-Sasakura, F., Kucho, K., Kanamori, N., Nagata, M., Suzuki, A., Abe, M., Higashi, S. and Uchiumi, T. (2010). Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus. Plant J. 57: 254-263.
  26. Shinde, S.S., Kachare, D.P., Satbhai, R.D. and Naik, R. M. (2017) Water stress induced proline accumulation and antioxidative enzymes in groundnut (Arachis hypogaea L.). Legume Res. 41: 67-72.
  27. Van, d.D.C. (1970). Differential analyses of glyoxylate derivatives. Anal Biochem. 33: 143-157.
  28. Zhang, G.C., Zhu, W.L., Gai, J.Y., Zhu, Y.L. and Yang, L.F. (2015). Enhanced salt tolerance of transgenic vegetable soybeans resulting from overexpression of a novel Ä1-pyrroline-5-carboxylate synthetase gene from Solanum torvum Swartz. Hortic Enviro Biote. 56: 94-104.
  29. Zhu, W.L., Yang, L.F., Yang, S.P., Gai, J.Y. and Zhu, Y.L. (2016). Overexpression of rice phosphate transporter gene OsPT2 enhances nitrogen fixation and ammonium assimilation in transgenic soybean under phosphorus deficiency. J Plant Biol. 59: 172-181. 

Global Footprints