Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 42 issue 5 (october 2019) : 640-645

Analysis of the effects of coumarin on Lens culinaris Medik by some biochemical parameters using real-time polymerase chain reaction

Burcu Yuksel, Ozlem Aksoy
1Kocaeli University, Vocational School of Kocaeli Health Sciences Kocaeli, 41380, Turkey.
  • Submitted01-07-2018|

  • Accepted21-12-2018|

  • First Online 29-04-2019|

  • doi 10.18805/LR-439

Cite article:- Yuksel Burcu, Aksoy Ozlem (2019). Analysis of the effects of coumarin on Lens culinaris Medik by some biochemical parameters using real-time polymerase chain reaction. Legume Research. 42(5): 640-645. doi: 10.18805/LR-439.
This study aimed to reveal the effects of coumarin on Lens culinaris Medik. The germinated and ungerminated seed counts of the experimental groups were determined and the EC50 value was calculated by probit analysis. In biochemical studies, catalase and superoxide dismutase enzyme activities were investigated together with lipid peroxidation and hydrogen peroxide quantities. The results demonstrated an increase in the amount of malondialdehyde, a measure of lipid peroxidation, a decrease in the amount of H2O2 and EC50 value in the CAT activity and an increase in the EC50 x 2 value. In real-time PCR analysis, three different genetic expressions related to abiotic stress (CAT, Cu / Zn SOD and Mn SOD gene expression) were examined. It was determined that coumarin caused genotoxic and biochemical damage on L. culinaris. 
  1. Abenavoli M.R., Sorgonà A., Sidari M., Badiani M., Fuggi A. (2006). Coumarin inhibits the growth of carrot (Daucus carota L. Cv. Saint Valery) cells in suspension culture, J. Plant Physiol., 160 (3), 227–223. 
  2. Aebi, H. (1984). Catalase in vitro. In Methods in Enzymology (Vol. 105, pp. 121-126). Academic Press. 
  3. Ahrabi, F., Entesharisup, S., Moradshahisup, A. (2011). Allelopathic potential of para-hydroxybenzoic acid and coumarin on canola: Talaieh cultivar. Journal of Medicinal Plants Research, 5(20), 5104-5109.
  4. Aksoy, E., (2008). Effect of drought and salt stresses on the gene expression levels of antioxidant enzymes in lentil (Lens culinaris M.) seedlings, Doctoral dissertation, The Graduate School of Natural and Applied Sciences, Middle East Technical University, Turkey. 
  5. Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141(2), 391-396.
  6. Beauchamp, C. and Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287.
  7. Dar, Z. M., Hemantaranjan, A., Panday, S. K. (2007). Antioxidative response of mungbean (Vigna radiata L.) to salt stress. Legume Research-An International Journal, 30(1), 57-60. 
  8. El-Khatib, R. M., Nassr, L. A. M. E. (2007). Reactivity trends of the base hydrolysis of coumarin and thiocoumarin in binary aqueous-methanol mixtures at different temperatures. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4), 643-648. 
  9. Finney, D. J. and Tattersfield, F. (1952). Probit Analysis. Cambridge University Press; Cambridge.
  10. Gapiñska, M., Sk³odowska, M., Gabara, B. (2008). Effect of short-and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiologiae Plantarum, 30(1): 11.
  11. Gill, S. S. and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. 
  12. Guenther, E. (1950). The Essention Oils. D. Van Nostrand Company, Inc; New York. London.
  13. Hua, D., Wang, C., He, J., Liao, H., Duan, Y., Zhu, Z., Gong, Z. (2012). A plasma membrane receptor kinase, GHR1, mediates abscisic acid-and hydrogen peroxide-regulated stomatal movement in Arabidopsis. The Plant Cell, tpc-112.
  14. Jain, M., Khatodia, S., Kharb, P., Batra, P., Chowdhury, V. K. (2017). Determination of Cry1Ac copy number in transgenic pigeonpea plants using quantitative real time PCR. Legume Research: An International Journal, 40(4):643-648.
  15. Kalender, S., Kalender, Y., Ates, A., Yel, M., Olcay, E., Candan, S. (2002). Protective role of antioxidant vitamin E and catechin on idarubicin-induced cardiotoxicity in rats. Brazilian Journal of Medical and Biological Research, 35(11), 1379-1387.
  16. Kostova, I. (2005). Synthetic and natural coumarins as cytotoxic agents. Current Medicinal Chemistry-Anti-Cancer Agents, 5(1), 29-46.
  17. Livanos, P., Apostolakos, P., Galatis, B. (2012). Plant cell division: ROS homeostasis is required. Plant Signaling & Behavior, 7(7), 771-778.
  18. MacRae, E. A. and Ferguson, I. B. (1985). Changes in catalase activity and hydrogen peroxide concentration in plants in response to low temperature. Physiologia Plantarum, 65(1), 51-56. 
  19. Montero-Tavera, V., Escobedo-Landín, M. A., Acosta-Gallegos, J. A., Anaya-Lopez, J. L., Ruiz-Nieto, J. E. (2017). 26S: Novel reference gene from leaves and roots of common bean for biotic stress expression expression studies based on PCR. Legume Research: An International Journal, 40(3),429-433.
  20. Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. 
  21. Ren, C. G., Li, X., Liu, X. L., Wei, X. D., Dai, C. C. (2014). Hydrogen peroxide regulated photosynthesis in C4-pepc transgenic rice. Plant Physiology and Biochemistry, 74: 218-229. 
  22. Saleh, A. M. and Kebeish, R. (2018). Coumarin impairs redox homeostasis in wheat aleurone layers. Journal of Plant Research, 131(1), 157-163.
  23. Wise, R. R. and Naylor, A. W. (1987). Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiology, 83(2), 278-282. 
  24. Wu, C. A., Yang, G. D., Meng, Q. W., Zheng, C. C. (2004). The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant and Cell Physiology, 45(5): 600-607. 
  25. Yuksel, B. and Aksoy, O. (2017). Cytologýcal effects of coumarýn on the mitosis of Lens Culinaris Medik. Fresenýus Envýronmental Bulletýn, 26(11): 6400-6407.

Editorial Board

View all (0)