Genetic Characterization and Diversity of Rhizobia Isolated from Root Nodules of Green Gram (Vigna radiata L.) found in Central Plateau of India

DOI: 10.18805/LR-4258    | Article Id: LR-4258 | Page : 353-361
Citation :- Genetic Characterization and Diversity of Rhizobia Isolated from Root Nodules of Green Gram (Vigna radiata L.) found in Central Plateau of India.Legume Research.2021.(44):353-361
Margaret Stella, Radheshyam Sharma, Sushma Nema, R.S. Ramakrishnan, Ashish Kumar radhebiotech88@gmail.com
Address : Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur-482 004, Madhya Pradesh, India.
Submitted Date : 12-10-2019
Accepted Date : 29-05-2020


Background: Plant growth promoting rhizobia play an important in agricultural ecosystem through symbiotic association with a wide range of leguminous plants. Legume-rhizobia association is a host specific symbiosis hence the need to identify the strains and the diversity of rhizobia associated with specific type of legume for better bio-prospecting of the associated benefits. A wide range of variation is present among the distribution of rhizobia and greatly affected by geographical locality, edaphic factors and environmental variation with time and space. Molecular techniques have been developed to aid the traditional phenotypic and morpho-cultural techniques in distinguishing the different microbial genera, species and strains. The present study aimed at isolation and morpho-molecular characterization of rhizobia from root nodule of green gram cultivated in central part of India. 
Methods: In the field-laboratory investigation during 2018-2019, various locations of central India with contrasting agro climatic conditions were surveyed and rhizobia trapping done. A total of 40 rhizobia were retrieved from nodules of green gram and characterized in laboratory based on morphological, biochemical and molecular techniques and results validated for taxonomic identification. 
Result: In our investigation all forty isolated rhizobia were found phosphate solubilizers, 38 IAA producers and 37 ammonia excretors and grew well at 28oC and 37oC. In carbohydrate fermentation test 34 isolates changed the broth colour from red to yellow with gas formation in durum tubes. Twenty diverse rhizobia isolates were selected with respect to their multifunctional properties and studied for molecular characterization. Based on 16S rRNA gene sequencing, these bacterial strains were identified under two genera: Rhizobium and Brady Rhizobium. Phylogenetic analysis divided 20 rhizobia isolates into two clusters. Major group included 12 strains and minor group included 8 strains.


Diversity Green gram Rhizobia Root nodules


  1. American Public Health Association (APHA), (1998). Standard Methods for the Examination of Water and Waste Water; 20th edition, Washington.
  2. Aneja, K.R. (2003). Experiments in microbiology, plant pathology and biotechnology, 4th edition. New Age International Publishers, New Delhi pp 275. 
  3. Barman, Manashi., Paul. Srijita., Choudhury, Aditi., Roy, Pinaki. and Jahnavi, Sen. (2017). Biofertilizer as prospective input for sustainable agriculture in India. International Journal of Current Microbiology and Applied Sciences, 6(11): 1177-1186. https://doi.org/10.20546/ijcmas.2017. 611.141. 
  4. Batista, L. Irisarri, P. Rebuffo, M. Cuitiño, M. J., Sanjuán, J. Monza, J. (2015). Nodulation competitiveness as a requisite for improved rhizobial inoculants of Trifolium pratense. Biology and Fertility of Soils. 51: 11-20. https://doi.org/10.1007/s00374-014-0946-3.
  5. Bergey’s manual of Determinative Bacteriology (7th ed.) (1964). American Journal Public Health Nations Health. 54(3): 544. 
  6. Cao Ying, En-Tao Wang., Liang Zhao, Wei-Min Chen Ge-Hong Wei. (2014). Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biology and Biochemistry. 78: 128-137. DOI: 10.1016/j.soilbio.2014.07.026.
  7. Deshwal, V.K. Dubey, R.C. and Maheshwari, D.K. (2014). Isolation of plant growth-promoting Brady Rhizobium sp with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Journal of Current Science. 84(3): 443-448.
  8. Elzanaty, A.M. Hewedy, O.A. Nagaty, H.H. and Abd-Elbary, M.I. (2015). Molecular and biochemical characterization of some Egyptian genotypes Rhizobium (Vicia Faba) isolates. Journal of Bioengineering and Biomedical Sciences. 5: 145. DOI: 10.4172/2155-9538.1000145.
  9. Gachande, B.D. and Khansole, G.S. (2011). Morphological, cultural and biochemical characteristics of Rhizobium japonicum syn and Brady Rhizobium japonicum of soybean. Bioscience Discovery. 2(1):1-4. 
  10. Gauri, Singh A.K. and Bamania, M. (2012). Characterization of MesoRhizobium sp. Isolated from root nodules of Cicer arietinum. International Journal of Agricultural Science. 2(3): 142-154.
  11. Gilbert, K. Mburu, W.S. Kimiti, J.M. Omwoyo O, Maingi, M.M. and Ezekiel M.N. (2018). Genetic characterization and diversity of Rhizobium isolated from root nodules of mid-altitude Climbing Bean (Phaseolus vulgaris L.) varieties. Frontiers Microbiology Research. 9:968. doi: 10.3389 fmicb. 2018. 00968.
  12. Girija, D. Panchami, P.S., Jose, P.E., Saeed T. and Nair, S.S. (2020). Isolation and Characterization of native cowpea rhizobia from Wayanad India. Legume Research-An International Journal. 43(1): 126-133. DOI: 10.18805/LR-3951. 
  13. Hartmann, A. Singh, M. Klingmüller, W. (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indole acetic acid. Canadian Journal Microbiology. 29: 916-923.
  14. Hamza, T.A. and Alebejo, A.L. (2017). Isolation and characterization of rhizobia from rhizosphere and root nodule of cowpea, elephant and lab lab plants. International Journal of Novel Research in Interdisciplinary Studies. 4(4):1-7.
  15. Jordan, D.C. and Allen, O N. (1974). Family III. Rhizobiaceae Conn, 1938. In Bergey’s Manual of Determinative Bacteriology, 8th edn,. (Edited byR.E.Buchanan and N.E. Gibbons). Baltimore, MD: Williams and Wilkins. pp. 261-264. Kang, J.W. Song, J. Doty, S.L and Lee, D.K. (2013). Diversity of rhizobia associated with leguminous trees growing in South Korea. Journal of Basic Microbiology. 53(3): 291-8. doi: 10.1002/jobm.201100504.
  16. Kleczkowska, J. Nutman, P.S. Skinner, F.A. and Vincent, J.M. (1968). The identification and classification of Rhizobium. In: Gibbs BM, Shapton DA (eds). Identification Methods for Microbiologists, Part B.Academic Press, london.
  17. Koskey, G. Mburu, S.W. Kimiti, J.M. Ombori, O, Maingi, J.M. and Njeru, E.M. (2018). Genetic characterization and diversity of Rhizobium isolated from root nodules of Mid-Altitude climbing bean (Phaseolus vulgaris L.) varieties. Frontiers in Microbiology. 9: 968. Doi:10.3389/fmicb.2018.00968.
  18. Kucuk, C. Kivanc, M. and Kinaci, E. (2006). Characterization of Rhizobium Sp. isolated from Bean. Turkish Journal of Biology. 30: 127-132.
  19. Laslo, E. Gyorgy, G. Mara, E. Tamas, B. Abraham, S. and Lanyi. (2012). Screening of plant growth promoting rhizobacteria as potential microbial inoculants. Crop Protection. 40: 43-48. 
  20. Mahdi S., Sheraz, G. I., Samoon S. A., Rather H. A., Showkat A., and Zehra B. (2010). Bio-fertilizers in organic agriculture. Journal of Physiology. 2(10): 42-54.
  21. Mamun, A. Mehed, M. Hassan, M. Rahman, M. Jakaria, S. and Mujahidy, A. (2013). Isolation and charaterization of Rhizobium Spp. and determination of their potency for growth factor production. International Research Journal of Biotechnology. 4(7):117-123.
  22. Manasa, K. Subhash, R. Reddy, S. Triveni, B. Kumar, K. and Gowri Priya N. (2017). Characterization of Rhizobium isolates and their potential PGPR characteristics of different Rhizosphere soils of Telangana Region, India. Internat    ional Journal of Current Microbiology Applied Science. 6(5): 2808-2813. 
  23. Martiny, B.J.M. Bohannan, J.H. Brown, R.K. Colwell, J.A. Fuhrman, J.L. Green, M.C. et al (2006) Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology. 4: 102-112. doi: 10.1038/nrmicro1341.
  24. Mondal, H.K and Gera, R. (2020). Molecular diversity of stress-tolerant PGPR rhizobia nodulating cluster bean (Cynopsis tetragonoloba L.) grown in hyper-arid zone of Rajasthan. Legume Research- An International Journal. 42(1): 134-139.
  25. Nahar, M. Mahal, Z. Zahid, H.M. Zaman, K. Jahan, F. Rahman, M.M. and Noor, R. (2012). Effects of plasmid curing on Rhizobium spp. Stamford Journal Microbiology. 2:1-4. 
  26. Naz. I. Bano, A. and UI-Hassan, T. (2009). Morphological, biochemical and molecular characterization of rhizobia from halophytes of khewra salt range and attock. Pakistan Journal of Biotechnology. 41(6): 3159-3168.
  27. Orrell, P. and Bennet, A.E. (2013). How can we exploit above below ground interactions to assist in addressing the challenges of food security. Frontiers in Plant Sciences. 4: 432. doi: 10.3389/fpls.2013.00432.
  28. Pikovskaya, R.I. (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species.Mikrobiologiya. 17: 362-370.
  29. Rahmani H. A. Räsänen L. A. Afshari M. and Lindström K. (2011). Genetic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in soils of Iran. Applied Soil Ecology. 48:287-293. Doi:10. 1016/j.apsoil.2011.04.010. 
  30. Rajendhran, J. and Gunasekaran, P. (2011). Microbial phylogeny and diversity: Small subunit ribosomal RNA sequence doi: 10.1016/j.micres.2010.02.003.
  31. Rangaswami, G. and Bagayaraj D.J. (1993). Microbial Biotechnology, Agricultural Microbiology. Prentice Hall of India Pvt Ltd, New Delhi. pp 389-405.
  32. Ruiz-Díez, B. Fajardo, S. Felipe, M.R. and Fernandez, P.M. (2012). Characterization of rhizobia from legumes of agronomic interest grown in semi-arid areas of Central Spain relates genetic differences to soil properties. Journal of Basic Microbiology. 52(1): 66-78. doi: 10.1002/jobm.201100058.
  33. Sharma, P. Sardana, V. and Kandola, S.S. (2011) Response of groundnut (Arachis hypogaea L.) to Rhizobium inoculation. Libyan Agriculture Research Center Journal International. 2: 101-104.
  34. Shetta, N.D. Al-Shaharani, T.S. and Abdel-Aal, M. (2011). Identification and characterization of Rhizobium associated with woody legume trees grown under Saudi Arabia condition. American-Eurasian Journal of Agricultural and Environmental Sciences. 10(3): 410-418.
  35. Somasegaran, P. and Hoben, H.J. (1994). Handbook for Rhizobia. Springer-Verlag New York. 
  36. Sridevi, M. Mallaiah, K.V. and Yadav, N.C.S. (2007). Phosphate solubilization by Rhizobium isolates from Crotalaria Species. Journal of Plant Sciences. 2(6):635-639. 
  37. Timmusk, S. Behers, L. Muthoni. J, Muraya, A. and Aronsson, A.C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Sciences. 8: 49-56. doi: 10.3389/fpls.2017.00049.
  38. Tyagi, A. Kumar, V. Purushottam and Tomar, A. (2017). Isolation, identification, biochemical and antibiotic sensitivity characterization of Rhizobium strains from Vigna mungo, Cicer arietinum and Vigna radiata. India. International Journal of Current Microbiology and Applied Sciences. 6(12): 2024-2035.
  39. Vincent, J.M. (1970). A Manual for the Practical Study of Root Nodule Bacteria. In I.B.P. Handbook No. 15, Blackwell Scientific Publications, Oxford, England pp 73-97. 
  40. Wadhwa, Z. Srivastava, V. Tanvi, R.R. Makkar, K. and Jangra, S. (2017). Isolation and characterization of Rhizobium from Chickpea (Cicer arietinum). International Journal of Current Microbiology and Applied Sciences. 6(11):2880-2893. DOI: 10.20546/ijcmas.2017.611.340.
  41. Wilson, K. (2001). Preparation of genomic DNA from bacteria. In (Ausubel FM and Brent reds.). 

Global Footprints