Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 45 issue 10 (october 2022) : 1301-1308

Single Marker Analysis in Groundnut for Tolerance to in vitro Seed Colonization by Aspergillus flavus and Aflatoxin Contamination

Hasanali Nadaf, B.N. Harish Babu, G. Chandrashekhara, D.L. Savithramma, Manjunath K. Naik
1Department of Genetics and Plant Breeding, UAHS, Shivamogga-577 204, Karnataka, India.
  • Submitted29-08-2019|

  • Accepted10-11-2020|

  • First Online 16-01-2021|

  • doi 10.18805/LR-4224

Cite article:- Nadaf Hasanali, Babu Harish B.N., Chandrashekhara G., Savithramma D.L., Naik K. Manjunath (2022). Single Marker Analysis in Groundnut for Tolerance to in vitro Seed Colonization by Aspergillus flavus and Aflatoxin Contamination. Legume Research. 45(10): 1301-1308. doi: 10.18805/LR-4224.
Background: Aflatoxin contamination in groundnut is a serious health concern for both humans and ruminants. Genetic resistance is a viable, cost-effective and eco-friendly approach to manage aflatoxin contamination. Molecular markers particularly SSRs have been proved to be very effective in Marker Assisted Selection.
Methods: In this study, single marker analysis using 30 SSR markers in 66 groundnut genotypes was executed to know if any selected SSRs were linked to in vitro seed colonization by Aspergillus flavus (IVSCAF) and/or aflatoxin contamination.
Result: Single marker analysis revealed significant association of few SSR markers with tolerance to IVSCAF and/or aflatoxin contamination. Four markers viz., GM-1954, GM-1883, pPGPseq-2F05 and S-03 were found to be associated with in vitro seed colonization by A. flavus. The marker GM-1954 has shown a maximum R2 value of 14.07 indicating that 14.07 per cent phenotypic variation for IVSCAF has been explained by this marker (F=0.002**). Further, three markers viz., S-21, S-80 and GM-1954 were found to be associated with tolerance to aflatoxin contamination. It is evident from the results that, the marker GM 1954 has shown association with both IVSCAF as well as aflatoxin contamination. However, the R2 value of GM 1954, which explains the phenotypic variation for aflatoxin contamination, was less (6.21) as compared to that of IVSCAF (14.07).
  1. Al-Saad, L. (2017). Biotic and abiotic control of aflatoxin b1 synthesis. In: Riga: Noor publishing.
  2. Anitha, B.K., Manivannan, N., Anandakumar, C.R. Ganesamurthy, K. (2015). Single Marker Analysis for Oil Yield and Component Traits in Groundnut (Arachis hypogaea L.). Madras Agric. J. 102 (1-3): 6-9. 
  3. Bhatnagarmathur, P. Sunkara, S. Bhatnagarpanwar, M. Waliyar, F. Sharma, K.K. (2015). Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci. 234: 119-32.
  4. Bolun Yu, Dongxin Huai, Li Huang, Yanping Kang, Xiaoping Ren, Yuning Chen, Xiaojing Zhou, Huaiyong Luo, Nian Liu, Weigang Chen, Yong Lei, Manish, K. Pandey, Hari Sudini, Rajeev, K. Varshney, Boshou Liao, Huifang Jiang. (2019). Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Genetics. 20: 32. Open Access https://doi.org/10.1186/s12863-019-0734-z.
  5. Chen, X., Lu, Q., Liu, H., Zhang, J., Hong, Y., Lan, H., Li, H., Wang, J., Liu, H., Li, S., Pandey, M.K., Zhang, Z., Zhou, G., Yu, J., Zhang, G., Yuan, J., Li, X., Wen, S., Meng, F., Yu, S., Wang, X., Siddique, K.H.M., Liu, Z.J., Paterson, A.H., Varshney, R.K., Liang, X. (2019). Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol. Plant. 12: 920-934.
  6. Chulze, S. Palazzini, J.M., Torres, A.M., Barros, G., Ponsone, M.L., Geisen, R. et al. (2015). Biological control as a strategy to reduce the impact of mycotoxins in peanuts, grapes and cereals in Argentina. Food Addit. Contam. Part A. Chem. Anal. Control Expo. Risk Assess. 32(4): 471-9.
  7. Dorner, J.W. (2008). Management and prevention of mycotoxins in peanuts. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008; 25(2): 203-8.
  8. Doyle, J.J., Doyle,J.L.(1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 19 (1): 11-15.
  9. FAOSTAT, (2018). FAO, Rome, Italy, http://www.fao.org/faostat/en/#home.
  10. Frimpong, R.O., Sriswathi, M., Ntare, B.R., Dakora, F.D. (2015). Assessing the genetic diversity of 48 groundnut (Arachis hypogaea L.) genotypes in the Guinea savanna agro-ecology of Ghana, using microsatellite-based markers. African J. of Biotch. 14(32): 2484-2493.
  11. Gepts, P. (1993). The use of molecular and biochemical markers in crop evolution studies. In: Evolution and Biology. 27 (Ed. Hecht), Plenum Press, New York.
  12. Haley, C.S., Knott, S.A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity. 69: 315-324.
  13. Hasanali Nadaf., Chandrashekhara, G., Harish Babu, B.N. and Savithramma, D.L. (2019). Assessing the Molecular Diversity in Groundnut (Arachis hypogaea L.) Genotypes Using Microsatellite-Based Markers. International Journal of Current Microbiology and Applied Sciences. 8(09): 983-993.https://doi.org/10.20546/ijcmas.2019.809.116.
  14. Hong, Y.B., Li, S.X., Liu, H.Y., Zhou, G.Y., Chen, X.P., Wen, S.J. (2009). Correlation analysis of SSR markers and host resistance to Aspergillusflavus infection in peanut (Arachis hypogaea L.). Mol. Plant Breed. 7: 360-364.
  15. Horn, B.W., Dorner, J.W. (1998). Soil populations of Aspergillus species from section Flavi along a transect through peanut- growing regions of the United States. Mycologia. 90 (5): 767-76. 
  16. Hostington, D.M. (1997). Laboratory protocol (CIMMYT) Applied molecular Genetics laboratory 3rd edition (CIMMYT) Batur Mexico D E CTI.
  17. Kew, M.C. (2013). Aflatoxins as a cause of hepatocellular carcinoma. J. Gastrointestin Liver Dis. 22(3): 305-10.
  18. Khlangwiset, P., Wu, F. (2010). Costs and efficacy of public health interventions to reduce aflatoxin-induced human disease. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 27(7): 998.
  19. Kukanur, S., Savithramma, D.L., Duddagi, S., Vijayabharathi, A., Mallikarjuna B.P., Pushpa, H.D. (2014). Validation of SSR markers linked to late leaf spot and rust in Groundnut (Arachis hypogaea L.). Eco. Env. and Cons. 20(1): 357-361.
  20. Lei-Yong., Liao-Boshou., Wang-Sheng, Yu., Li-Dong., Jiang-Hui, Fang. (2005). Identification of AFLP markers for resistance to seed infection by Aspergillusflavusin peanut (Arachis hypogaea L.). Acta Agronomica-Sinica. 31(10): 1349-1353.
  21. Mace, E.S., Phong, D.T., Upadhyaya, H.D., Chandra, S., Crouch, J.H. (2006). SSR analysis of cultivated groundnut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases. Euphytica. 152: 317-330.
  22. Mondal, S., Badigannavar, A.M. (2010). Molecular diversity and association of SSR markers to rust and late leaf spot resistance in cultivated groundnut (Arachis hypogaea L.). Plant Breed. 129: 68-71. 
  23. Patten, R.C. (1981). Aflatoxins and disease. Am. J. Trop. Med. Hyg. 30 (2): 422-5.
  24. Rohlf, F.J. (1998). NTSYSPC numerical taxonomy and multivarietal analysis, Version 2. 0. Applied Biostatics, New York.
  25. Sugri, I., Osiru, M., Abudulai, M., Abubakari, M., Asieku, Y., Lamini, S., Zakaria, M. (2017). Integrated peanut aflatoxin management for increase income and nutrition in northern Ghana. Cogent Food Agriculture. 3(1): 1312046.
  26. Torres, A.M., Barros, G.G., Palacios, S.A., Chulze, S.N., Battilani, P. (2014). Review on pre and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res. Int. 62(8): 11-9.
  27. Yol, E., Upadhyaya, H.D., Anduzun, B. (2016). Identification of rust resistance in groundnut using a validated SSR marker. Euphytica. 210(3): 405-411.
  28. Zongo, A., Khera, P., Sawadogo, M., Shasidhar, Y., Vishwakarma, M.K., Sankara, P., Ntare, B.R., Varshney, R.K., Pandey, M.K., Desmae, H. (2017). SSR markers associated to early leaf spot disease resistance through selective genotyping and single marker analysis in groundnut (Arachis hypogaea L.). Biotechnol. Rep. (Amst). 15: 132-137.

Editorial Board

View all (0)