Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 42 issue 4 (august 2019) : 437-446

Cowpea genetic resources and its utilization: Indian perspective – A review

Kuldeep Tripathi, P.G. Gore, S.P. Ahlawat, V. Tyagi, D.P. Semwal, N.K. Gautam, J.C. Rana, A. Kumar
1ICAR-National Bureau of Plant Genetic Resources, New Delhi-110 012, India.
  • Submitted02-04-2019|

  • Accepted16-05-2019|

  • First Online 05-06-2019|

  • doi 10.18805/LR-4146

Cite article:- Tripathi Kuldeep, Gore P.G., Ahlawat S.P., Tyagi V., Semwal D.P., Gautam N.K., Rana J.C., Kumar A. (2019). Cowpea genetic resources and its utilization: Indian perspective – A review. Legume Research. 42(4): 437-446. doi: 10.18805/LR-4146.
Cowpea is a multipurpose food legume of the tropics and is a crucial source of nutrition for rural and tribal communities in Africa and Asia. High protein content, nitrogen-fixing ability, drought tolerance and adaptability to challenging environment make cowpea, a promising climate resilient food legume of 21st century. This crop is grown as sole or mix-crop and in agro-forestry combinations for diverse uses as pulse, vegetable and fodder. Although cowpea has been used by indigenous people for centuries, its full potential has never been realized. Its production did not increase over the years due to narrow genetic base, biotic and abiotic stresses and non-adaptation to changing climate. Ultimate solution lies in its genetic resource which are the reservoir of useful genes. Lack of information on germplasm characterization and evaluation restricts the effective use of germplasm stored in the genebanks. Introgression of genes from closely related Vigna species and application of modern molecular tools may facilitate broadening the genetic base of cowpea. 
  1. Abraham, Z., Senthilkumar, R., John, K.J., Sharma, T.V., Nair, N.V., Unnikrishnan, M., Kumaran, P.M., George, J.K., Uma, S., Latha, M. and Malik, S.S. (2008). Collection of plant genetic resources from Andaman and Nicobar Islands. Genet Resour Crop Evol., 55:1279-89.
  2. Anantharaju, P. and Muthiah, A.R. (2008). Screening for drought tolerance in cowpea, Vigna unguiculata (L.) Walp. Legume Res., 31(4): 283-285.
  3. Anatala, T.J., Gajera, H.P., Disha, D., Savaliya, Domadiya, R.K., Patel S.V. and Golakiya, B.A. (2014.) Molecular diversity analysis of cowpea [Vigna unguiculata (L.) Walp.] genotypes determined by ISSR and RAPD markers. Int J Agric Environ Biotechnol., 7: 269-276.
  4. Bakshi, S., Sadhukhan, A., Mishra, S. and Sahoo, L. (2011). Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep., 30: 2281–2292.
  5. Bakshi, S., Saha, B., Roy, N.K., Mishra, S., Panda, S.K. and Sahoo L. (2012). Successful recovery of transgenic cowpea [Vigna unguiculata (L.) Walp.] using the 6-phosphomannose isomerase gene as the selectable marker. Plant Cell Rep., 31: 1093-103.
  6. Barua, U., Singh, S.K., Pal, A.K. and Hore, D.K. (2006). Collection of crop germplasm from Nagaland state of India. Environ Ecol., 24: 704.
  7. Baudoin, J.P. and Marechal, R. (1988). Taxonomy and evolution of the genus Vigna. In Mungbean: Proceedings of the second international symposium Asian vegetable research development center, Shanhua, Taiwan, pp. 2–12.
  8. Blochmann, H. (1873). The Ain-i-Akbari by Abul Fazl Allami. Book I. The Asiatic Society, Calcutta 700016, West Bengal, India. 741pp. (Reprint 1993.)
  9. Boukar, O., Bhattacharjee, R., Fatokun, C., Kumar, P.L. and Gueye, B. (2013). Cowpea. In: Genetic and Genomic Resources of Grain Legume Improvement, (eds Singh, M., Upadhyaya, H.D. and Bisht, I.S.) p.137-155.
  10. Chalam, V.C., Parakh, D.B., Khetarpal, R.K., Maurya, A.K., Jain, A. and Singh, S. (2008). Interception of seed-transmitted viruses in cowpea and mungbean germplasm imported during 2003. Indian J Virol., 19: 12-16.
  11. Chari, M.S., Patel, G.J., Patel, P.N. and Raj S. (1976). Evaluation of cowpea lines for resistance to aphid Aphis craccivora Koch. Gujarat Agric Univ Res J., 1: 130-132.
  12. Chattopadhyay, A., Chakraborty, K., Dasgupta, T., Hazra, P. and Som, M.G. (1996). Evaluation of genotypes for agronomic and morphological characters in vegetable cowpea. Indian J Hort., 53: 304-308.
  13. Chaudhary, D., Madanpotra, S., Jaiwal, R., Saini, A., Kumar, P. and Jaiwal, P.K. (2007). Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea [Vigna unguiculata (L.) Walp] cultivar and transmission of transgene into progeny. Plant Sci., 172(4): 692–700.
  14. Chunekar, K.C. and Pandey G.S., (1998). Bhavaprakash, Nighantu (Indian Materia Medica) of Sri Bhavamisra (c.1500–1600 AD), Chaukhamba Bharati Academy 221001, Varanasi, Uttar Pradesh, India. 984pp. (Reprint.)
  15. Devi, L.S. and Gupta, P. (1991). Evaluation of cowpea varieties against cyst nematode. Curr Nematol., 2: 59-60.
  16. Dhanavel, D., Gnanamurthy, S. and Girija, M. (2012). Effect of gamma rays on induced chromosomal variation in cowpea [Vigna unguiculata (L.) Walp]. International Journal of Current Science, 245-250.
  17. Echikh, N. (2000). Organisation du pool génique de formes sauvages et cultivées d’une légumineuse alimentaire, Vigna unguiculata (L.) Walp. Thèse de doctorat, Faculté universitaire des Sciences agronomiques, Gembloux, Belgique, p 307
  18. Fatokun, C.A. and Singh, B.B. (1987). Interspecific hybridization between Vigna pubescens and V. unquiculata (L.) Walp through embryo rescue. Plant Cell Tissue Organ Cult., 9(3):229–233.
  19. Fatokun, C.A. (1991) Wide hybridization in cowpea: problems and prospects. Euphytica, 54:137–140.
  20. Fatokun, C. A. (2002). Breeding cowpea for insect pests: Attempted crosses between cowpea and Vigna vexillata. In [C. A. Fatokun, S. A. Tarawali, B. B. Singh, P. M. Kormawa, and M. Tamo (Eds.)], Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the world cowpea conference, 4–8 September 2000 (pp. 52–61). International Institute of Tropical Agriculture IITA. Ibadan, Nigeria:
  21. Girija, M. and Dhanavel, D. (2009). Mutagenic effectiveness and efficiency of gamma rays, ethyl methane sulphonate and their combined treatments in cowpea [Vigna unguiculata (L.) Walp]. Global J Mol Sci., 4: 68-75.
  22. Girija, M., Dhanavel, D. and Gnanamurthy, S. (2013). Gamma rays and EMS induced flower color and seed mutants in cowpea [Vigna unguiculata (L.) Walp]. Adv Appl Sci Res., 4: 134-139.
  23. Gomathinayagam, P., Rathnaswamy, R. and Ramaswamy, N. M. (1998). Interspecific hybridization between [Vigna unguiculata (L.) Walp.] and V. vexillata (L.) A. Rich. through in vitro embryo culture. Euphytica, 102(2): 203-209.
  24. Gore, P.G., Chauhan, S.K., Tripathi, K. and Bhalla, S. (2015). Physical basis of resistance in wild Lens spp. accessions to pulse beetle, Callosobruchus chinensis. Indian J Plant Prot., 43: 267-272.
  25. Gupta, S.K., Bansal, R. and Gopalakrishna, T. (2012). Development of intron length polymorphism markers in cowpea [Vigna unguiculata (L.) Walp.] and their transferability to other Vigna species. Mol Breed., 30: 1363–1370.
  26. Hegde, V.S. and Mishra, S.K. (2009). Landraces of cowpea, [Vigna unguiculata (L.) Walp.] as potential sources of genes for unique characters in breeding. Genet Resour Crop Evol., 56: 615-627.
  27. Hijmans, R.J., L Guarino, M,. Cruz, and Rojas, E. (2001.) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Pl. Genet. Resour. News Lett., 127: 15-19.
  28. ICAR-NBPGR (2018). Annual Report 2017-2018, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India, 181p.
  29. ICAR-NBPGR (2016). Annual Report of the ICAR-National Bureau of Plant Genetic Resources 2015-16, NBPGR, Pusa Campus, New Delhi, India, 195+xp.
  30. International Board of Plant Genetic Resources (1983). Cowpea Descriptors, Rome, Italy.
  31. International Institute of Tropical Agriculture (1974). Cowpea Germplasm Catalog, Ibadan, Nigeria.
  32. Jarvis, A., Lane, A. and Hijmans, R.J. (2008). The effect of climate change on crop wild relatives. Agric Ecosyst Environ., 126: 13-23.
  33. Jayappa, B.G. and Lingappa, S. (1988). Screening of cowpea germplasm for resistance to Aphis craccivora Koch. in India. Trop Pest Manag., 34: 62-64.
  34. Kharkwal, M.C. and Shu, Q.Y. (2009). The role of induced mutations in world food security. In: Induced Plant Mutations in the Genomics Era (ed G.Y. Shu). Food and Agriculture Organization of the United Nations, Rome. pp. 33-38.
  35. Khan, Z., Gautam, N.K., Gawade, B.H. and Dubey, S.C. (2018). Evaluation of cowpea (Vigna unguiculata L.) germplasm for the source of resistance to root-knot nematode, Meloidogyne incognita. Nematropica. 48:27-33.
  36. Kouadio, D., Toussaint, A., Pasquet, R.S. and Baudoin, J.P. (2006) Barrières pré-zygotiques chez les hybrides entre formes sauvages du niébé, [Vigna unguilata (L.) Walp]. Biotechnol Agron Soc Environ., 10(1):33–41.
  37. Kumar, A., Sharma, K.D. and Kumar, D. (2008). Traits for screening and selection of cowpea genotypes for drought tolerance at early stages of breeding. J Agric Rural Dev Trop., 109(2): 191–199.
  38. Lioi, L., Morgese, A., Cifarelli, S. and Sonnante, G. (2019). Germplasm collection, genetic diversity and on-farm conservation of cowpea [Vigna unguiculata (L.) Walp.] landraces from Apulia region (southern Italy). Genetic Resources and Crop Evolution, 66(1): 165-175.
  39. Mahajan, R.K., Sapra, R.L., Umesh, S., Singh, M. and Sharma, G.D. (2000). Minimal descriptors for characterization and evaluation of agri-horticultural crops. National Bureau of Plant Genetic Resources, New Delhi. 230p.
  40. Mahalakshmi, V., Ng Q., Lawson, M. and Ortiz, R. (2007). Cowpea [Vigna unguiculata (L.) Walp.] core collection defined by geographical, agronomical and botanical descriptors. Plant Genet Res., 5(3): 113– 119.
  41. Makanur, B.A., Deshpande, V.K. and Vyakaranahal, B.S. (2013). Characterization of cowpea genotypes based on quantitative descriptors. The Bioscan, 8(4): 1183-1188.
  42. Malviya, N., Sarangi, B.K., Yadav, M.K. and Yadav, D. (2012). Analysis of genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivars with random amplified polymorphic DNA markers. Plant Syst Evol., 29: 523-526.
  43. Manjunatha, N., Sah, R.P., Deb, D., Shivakumar, M.S. and Archana, S. (2016). Effect of bean common mosaic virus infection on yield potential and nodulation of cowpea genotypes. Range Manag. Agrofor., 37(2): 185-191.
  44. Mehra, K.L. (2002). Agricultural foundation of Indus-Saraswati civilization. In: Agricultural Heritage of India: proceedings of the national conference (eds Y.L. Nene and S.L Choudhary), Rajasthan, India. pp.1–21.
  45. Mishra, S.K., Sharma, B., Tyagi, M.C., Singh, B.B., Basandrai, D., Basandrai, A.K., Singh, D.P., Hegde, V. and Singh, B.B. (2008). Screening of cowpea germplasm for field tolerance against biotic and abiotic stresses. Indian J Genet Pl Br., 68: 446-448.
  46. Mondal, T.K., Ganie, S.A., Niraj, R.R.K. and Rana, M.K. (2013). Cloning and in silico analysis of a gene encoding a putative â-    carbonic anhydrase from cowpea [Vigna unguiculata (L.) Walp]. J Plant Interact., 9: 504-513.
  47. Nair, R. and Mehta, A.K,. (2014). Induced mutagenesis in cowpea [Vigna unguiculata (L.) Walp] var. Arka Garima. Indian J Agric Res., 48: 247.
  48. Ng, N.Q. and Marechal, R. (1985). Cowpea taxonomy, origin and germplasm. In: Cowpea Research Production and Utilization (eds S.R. Singh and K.O. Rachie), John Wiley and Sons, Chichester, UK. pp. 11–21.
  49. Padulosi, S. and Ng, N.Q. (1997). Origin, taxonomy and morphology of [Vigna unguiculata (L.) Walp.] In: Advances in Cowpea Research (eds B.B.Singh, R.D.R Mohan., K.E. Dashiell and L.E.N. Jackai), Ibadan, Nigeria. pp. 1–12.
  50. Pandey, R.N., Dhanasekar, P. and Souframanien, J (2004). RAPD based DNA fingerprinting and analysis of genetic diversity in radiation induced mutants of cowpea [Vigna unguiculata (L.) Walp.]. Indian J Genet., 64(2): 97-101.
  51. Pathak, R.S. (1988). Genetics of resistance to aphid in cowpea. Crop Sci., 28(3): 474-476.
  52. Prasanthi, L., Geetha, B., Jyothi, B.R. and Reddy K.R. (2012). Evaluation of genetic diversity in cowpea, [Vigna unguiculata (L.) Walp.] gentotypes using Random Amplified Polymorphic DNA (RAPD). Curr Biotica, 6: 22-31.
  53. Roy, S., Sahay, G., Singh, U.P. and Soni R. (2011). Evaluation of genetic divergence in cowpea [Vigna unguiculata (L.) Walp.] for major insect pests. Indian J Agric Sci., 81: 82-85.
  54. Sardana, S., Mahajan, R.K., Kumar, D., Singh, M. and Sharma, G.D. (2000). Catalogue on cowpea [Vigna unguiculata (L.) Walp.] germplasm. National Bureau of Plant Genetic Resources, New Delhi. 80p.
  55. Semwal, D.P, Bhandari, D.C., Bhatt, K.C. and Singh, R. (2013). Diversity distribution pattern in collected germplasm of rapeseed-    mustard using GIS in India. Indian J Plant Genet Resources, 26(1): 76-81.
  56. Singh, B.B. (2000). Simple screening methods for drought and heat tolerance in cowpea. In: regional training workshop on adoption of appropriate selection techniques for the development of drought tolerance germplasm, International Institute of Tropical Agriculture, Nigeria.
  57. Singh, B.B. (2014). Cowpea: the food legume of the 21st century. Crop Science Society of America, Madison, Wisconsin, USA.
  58. Singh, D.P., Sharma S.P., Lal, M., Ranwah, B.R. and Sharma V. (2013). Induction of genetic variability for polygenic traits through physical and chemical mutagens in cowpea [Vigna unguiculata (L.) Walp]. Legume Res., 36: 10-14.
  59. Singh, K.J., Singh, O.P. and Banafer, R.N. (1990). Evaluation of cowpea varieties against aphid, (Aphis craccivora Koch.) infestation. J Aphidol., 4: 86-88.
  60. Singh, B. B. (2016). Genetic enhancement for yield and nutritional quality in cowpea [Vigna unguiculata (L.) Walp.]. Indian J Genet Pl Br., 76(4):568-582
  61. Solleti, S.K., Bakshi, S., Purkayastha, J., Panda, S.K. and Sahoo, L. (2008a). Transgenic cowpea [Vigna unguiculata (L.) Walp.] seeds expressing a bean a-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep., 27: 1841–1850.
  62. Solleti, S.K., Bakshi, S. and Sahoo L. (2008b). Additional virulence genes in conjunction with efficient selection scheme, and compatible culture regime enhance recovery of stable transgenic plants in cowpea via Agrobacterium tumefaciens-mediated transformation. J Biotechnol., 135: 97-104.
  63. Sreerama, Y.N., Sashikala, V.B., Pratape V.M. and Singh V. (2012). Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chem., 131: 462-468.
  64. Timko, M. P., Gowda, B. S., Ouédraogo, J., and Ousmane, B. (2007). Molecular markers for analysis of resistance to Striga gesnerioides in cowpea. In [G. Ejeta and J. Gressell (Eds.)], Integrating new technologies for striga control: Towards ending the witch-    hunt (pp. 115–128). Singapore: World Scientific Publishing Co. Pte Ltd.
  65. Tripathi, K., Bhalla, S., Prasad, T.V., Srinivasan, K., (2012). Differential reaction of cowpea [Vigna unguiculata (L.) Walp.] genotypes to pulse-beetle (Callosobruchus maculatus). Vegetos, 25: 367-374.
  66. Tripathi, K., Bhalla, S., Srinivasan, K., Prasad, T.V. and Gautam, R.D. (2013). Physical and biochemical basis of resistance in cowpea [Vigna unguiculata (L.) Walp.] accessions to pulse-beetle, Callosobruchus chinensis (L.). Legume Res., 36: 457-466.
  67. Tripathi, K., Chauhan, S.K., Gore, P.G., Mehta, P.S., Bisht, I.S. and Bhalla S. (2016). Evaluation of wheat landraces of north-western Himalaya against rice weevil, Sitophilus oryzae L. vis-à-vis physical seed parameters. Plant Genet Resour., 15(4): 321-326.
  68. Tripathi, K., Chauhan, S.K., Gore, P.G., Prasad, T.V., Srinivasan, K. and Bhalla S. (2015). Screening of cowpea [Vigna unguiculata (L.) Walp.] accessions against pulse-beetle, Callosobruchus chinensis (L.). Legume Res., 38: 675-680.
  69. Uma, M.S., Hittalmani, S., Keshava, M.B.C. and Viswanatha K.P. (2009). Microsatellite DNA marker aided diversity analysis in cowpea [Vigna unguiculata (L.) Walp.]. Indian J Genet Pl Br., 69: 35-43. 
  70. Van Hintum T., Menting F. and Van Strien E. (2011). Quality indicators for passport data in ex-situ genebanks. Plant Genet Resour., 9(3): 478-485.
  71. Verdcourt, B. (1970) Studies in the Leguminosae-Papilionoideae for the flora of tropical East Africa. IV Kew Bulletin, 24: 507–569.
  72. Verma, P.K. (2016). Characterization and evaluation of cowpea [Vigna unguiculata (L.) Walp.] germplasm accessions for pod and fodder yield. Dissertation, Indira Gandhi Krishi Vishwavidyalaya, Raipur.
  73. Vidyalankar, J. (1994). Charaka samhita. part I. 9th edn, Motilal Banarsidass, New Delhi, India, pp 522. 
  74. Xiong H., Shi A., Mou B., Qin J., Motes D., Lu W., Ma J., Weng Y., Yang W. and Wu D. (2016). Genetic diversity and population structure of cowpea [Vigna unguiculata (L.) Walp]. PLoS One,11(8): e0160941. 

Editorial Board

View all (0)