Loading...

Salt induced inhibition in photosynthetic parameters and polyamine accumulation in two legume cultivars and its amelioration by pretreatment of seeds with NaCl

DOI: 10.18805/LR-4106    | Article Id: LR-4106 | Page : 295-301
Citation :- Salt induced inhibition in photosynthetic parameters and polyamine accumulation in two legume cultivars and its amelioration by pretreatment of seeds with NaCl.Legume Research.2021.(44):295-301
Sabarni Biswas, Paramita Chatterjee, Soumyajit Biswas, Asis Mazumdar and Asok Kumar Biswas asokkbiswas16@gmail.com
Address : Department of Botany, Plant Physiology and Biochemistry Laboratory, University Of Calcutta, 35, Ballygunge Circular Road, Kolkata-700 019, West Bengal, India.
Submitted Date : 5-12-2018
Accepted Date : 23-01-2019

Abstract

Enhancement of salt tolerance by pretreatment with sublethal dose of NaCl (50mM) has been investigated in arhar (Cajanas cajan L.) and maskalai (Vigna mungo L.) seedlings. Degradation of photosynthetic pigments in both the NaCl stressed legume cultivars resulted in less photosynthetic activity to occur. This was evident from reduced Hill activity recorded. NaCl stress hampered stomatal conductance that subsequently affected internal CO2 concentration, net photosynthetic rate and also transpiration rate. Both the tested cultivars accumulated polyamines to limit cellular damage under such stressed conditions. Increased level of (Spermine+Spermidine)/Putrescine ratio and decreased level of cadavarine were observed in the nonpretreated seedlings grown under NaCl stress. However, seed pretreatment with 50mM NaCl for two hours helped the cultivars to overcome adverse effects caused by NaCl stress on stomatal activity, gas exchange parameters and polyamine contents that resulted the cultivars to acclimate such that it improved their metabolism under saline conditions.

Keywords

Chloroplastic pigments Gas exchange parameters Legumes Polyamines Salt stress.

References

  1. Abeer, H., Abd-Allah E.F., Alqarawi A.A. Egamberdieva D. (2015). Induction of salt stress tolerance in cowpea [Vigna unguiculata (L.)Walp.] by arbuscular mycorrhizal fungi. Legume Res., 38: 579-588.
  2. Amuthavalli, P., Sivasankaramoorthy, S. (2012). Effect of salt stress on the growth and photosynthetic pigments of pigeon pea (Cajanus cajan). J. Appl. Pharm. Sci., 2: 131-133.
  3. Arnon, D.I. (1949). Copper enzyme in isolated chloroplast. Plant Physiol., 24: 1-15.
  4. Chatterjee, P., Biswas, S., Biswas, A.K. (2017). Amelioration of salinity stress by NaCl pretreatment with reference to sugar metabolism in legumes Cajanus cajan L. and Vigna mungo L. Plant Sci. Today, 4:28-40.
  5. Chatterjee, P., Biswas, S., Biswas, A.K. (2018). Sodium chloride primed seeds modulate glutathione metabolism in legume cultivars under NaCl stress. Am. J. Plant Physiol., 13:8-22. 
  6. Chaves, M.M., Flexas, J., Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot., 103:551-560. 
  7. Duan, J., Li, J., Guo, S., Kang, Y. (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J. Plant Physiol., 165: 1620-1635.
  8. El-Shintinawy, F. (2000). Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica, 38: 615-620.
  9. Flores, H.E., Galston, A.W. (1982). Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol., 69:701-706.
  10. Hatamnia, A.A., Abbaspour, N., Darvishzadeh, R., Rahmani, F., Heidari, R. (2013). Effect of salt stress on growth, ion content and photosynthesis of two oriental Tobacco (Nicotiana tabacum) cultivars. Int. J. Agric. Crop Sci., 6: 757-761.
  11. Ioannidis, N.E., Cruz, J.A., Kotzabasis, K., Kramer, D.M. (2012). Evidence that putrescine modulates the higher plant photosynthetic proton circuit. PLoS One, 7: e29864.
  12. Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R., Panneerselvam, R. (2007). Water deficit stress mitigation by calcium chloride in Catharanthus roseus: effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids Surf. B. Biointerfaces, 60: 110-116.
  13. Kubiœ, J., Floryszak-Wieczorek, J., Arasimowicz-Jelonek, M. (2014). Polyamines induce adaptive responses in water deficit stressed cucumber roots. J. Plant Res., 127: 151-158.
  14. Li, S., Jin, H., Zhang, Q. (2016). The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in Zoysia grass (Zoysia Japonica Steud) subjected to short-term salinity stress. Front. Plant Sci., 7: 1221.
  15. Liu, T., Dobashi, H., Kim, D.W., Sagor, G.H.M., Niitsu, M., Berberich, T., Kusano, T. (2014). Arabidopsis mutant plants with diverse defects in polyamine metabolism show unequal sensitivity to exogenous cadaverine probably based on their spermine content. Physiol. Mol. Biol. Plants, 20: 151–159. 
  16. Mukherjee, S., Biswas, A.K. (1979). Modulation of chlorophyll, carotene and xanthophyll formation by penicillin, benzyladenine and embryonic axis in mungbean (Phaseolus aureus L.) cotyledons. Ann. Bot., 43: 225-229.
  17. Radadiya, N., Parekh, V.P., Dobariya, B., Mahatma, L., Mahatma, M.K. (2016). Abiotic stresses alter expression of S-adenosylmethionine synthetase gene, polyamines and antioxidant activity in pigeon pea (Cajanus cajan L.). Legume Res., 39: 905-913.
  18. Sadeghipour, O. (2017). Amelioration of salinity tolerance in cowpea plants by seed treatment with methyl jasmonate. Legume Res., 40: 1100-1106. 
  19. Saha, P., Chatterjee P., Biswas, A.K. (2010). NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J. Exp. Biol., 48: 593- 600.
  20. Saha, P., Kunda, P., Biswas, A.K. (2012). Influence of sodium chloride on the regulation of Krebs cycle intermediates and enzymes of respiratory chain in mungbean (Vigna radiata L. Wilczek) seedlings. Plant Physiol. Biochem., 60: 214-222.
  21. Sharma, N., Gupta, N.K., Gupta, S., Hasegawa, H. (2005). Effect of NaCl salinity on photosynthetic rate, transpiration rate, and oxidative stress tolerance in contrasting wheat genotypes. Photosynthetica, 43: 609-613.
  22. Sudhir, P., Murthy, S.D.S. (2004). Effect of salt stress on basic processes of photosynthesis. Photosynthetica, 42: 481-486.
  23. Verma, S., Mishra, S.N. (2005). Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J. Plant Physiol., 162: 669-677.
  24. Vishniac, W. 1957. Methods for the study of Hill reaction. Methods in Enzymology. Academic press, New York. pp. 342-355. 
  25. Widodo, P.J.H., Newbigin, E., Tester, M., Bacic, A., Roessner, U. (2009). Metabolic responses of salt stress in barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J. Exp. Bot., 60: 4089-4103. 
  26. Zapata, P.J., Serrano, M., Pretel, M.T., Amorós, A., Botella, M.A. (2004). Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci., 167: 781-788.
  27. Zhang, G.W., Hu, Q.Z., Xu, S.C., Gong, Y.M. (2013). Polyamines play a positive role in salt tolerant mechanisms by activating antioxidant enzymes in roots of vegetable soyabean. Legume Res., 36: 234-240. 

Global Footprints