A modified pod specific promoter for high level heterologous expression of genes in legumes

DOI: 10.18805/LR-4073    | Article Id: LR-4073 | Page : 51-59
Citation :- A modified pod specific promoter for high level heterologous expression of genes in legumes.Legume Research.2021.(44):51-59
Aravind Kumar Konda, Pallavi Singh, Khela Ram Soren and Narendra Pratap Singh aravindbio@gmail.com
Address : Division of Plant Biotechnology, ICAR- Indian Institute of Pulses Research, Kalyanpur, Kanpur-208 024, Uttar Pradesh, India.
Submitted Date : 22-08-2018
Accepted Date : 15-05-2019


Promoters are cis-acting regulatory elements that are usually present upstream to the coding sequences and determine the gene expression. Deployment of tissue specific and inducible promoters are constantly increasing for development of successful and stable multiple transgenic plants. To this end, as a strategy for enhanced expression of cis or transgenes, promoter engineering of the native msg promoter from soya bean has been carried out for executing pod specific expression of genes. Cis regulatory elements such as 5’UTR and poly (A) tract have been incorporated for imparting mRNA stability and translational enhancement to generate the modified 1.285 Kb pod specific promoter. Further to attain transcriptional enhancement the modified promoter has been cloned to generate Bi-directional Duplex Promoters (BDDP). The engineered msg promoter gene constructs can be deployed for high level tissue specific gene expression of cis/trans genes along with chosen terminator in chickpea. soybean and other legumes as well.


Bi-Directional Duplex Promoter (BDDP) Chickpea Cis-engineering Pod specific gene expression Translational enhancement.


  1. Chen, Y. M., Dong, Y. H., Liang, Z. B., Zhang, L. H., and Deng, Y. Z. (2018). Enhanced vascular activity of a new chimeric promoter containing the full CaMV 35S promoter and the plant XYLOGEN PROTEIN 1 promoter. 3 Biotech. 8(9): 380. DOI:10.1007/s13205-018-1379-8.
  2. Chennareddy, S., Cicak, T., Clark, L., Russell, S., Skokut, M., Beringer, J., et al. (2017). Expression of a novel bi-directional Brassica napus promoter in soybean. Transgenic Research. 26(6): 727-738. DOI:10.1007/s11248-017-0042-1.
  3. Das, A., Datta, S., Thakur, S., Shukla, A., Ansari, J., Sujayanand, G. K., et al. (2017). Expression of a chimeric gene encoding insecticidal crystal protein Cry1Aabc of Bacillus thuringiensis in Chickpea (Cicer arietinum L.) confers resistance to gram pod borer (Helicoverpa armigera Hubner.). Frontiers in Plant Science. 8: 1423. DOI:10.3389/fpls.2017.01423.
  4. Fang, Y., Wang, L., Wang, X., You, Q., Pan, X., Xiao, J., et al. (2016). Histone modifications facilitate the coexpression of bidirectional promoters in rice. BMC genomics. 17(1): 768. DOI:10.1186/s12864-016-3125-0.
  5. Fessele, S., Maier, H., Zischek, C., Nelson, P. J., et al. (2002). Regulatory context is a crucial part of gene function. TRENDS in Genetics. 18(2): 60-63. DOI:10.1016/S0168-9525(02)02591-X.
  6. Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C. and Wilson, T. M. A. (1987). The 5'-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Research. 15(8):3257-3273.
  7. Gurr, S. J., and Rushton, P. J. (2005). Engineering plants with increased disease resistance: what are we going to express?. Trends in Biotechnology. 23(6): 275-282. DOI:10.1016/j.tibtech.2005.04.007.
  8. Hernandez-Garcia, C. M., and Finer, J. J. (2014). Identification and validation of promoters and cis-acting regulatory elements. Plant Science. 217: 109-119. DOI:10.1016/j.plantsci.2013.12.007.
  9. Horowitz, H., and Platt, T. (1983). Initiation in vivo at the internal trp p2 promoter of Escherichia coli. Journal of Biological Chemistry. 258(13): 7890-7893. 
  10. Huang, P., Pleasance, E. D., Maydan, J. S., Hunt-Newbury, R., O’Neil, N. J., Mah, A., et al. (2007). Identification and analysis of internal promoters in Caenorhabditis elegans operons. Genome research. 17(10): 1478-1485. DOI:10.1101/gr.6824707.
  11. Jobling, S. A., and Gehrke, L. (1987). Enhanced translation of chimaeric messenger RNAs containing a plant viral untranslated leader sequence. Nature. 325(6105): 622. DOI:10.1038/325622a0.
  12. Kolovos, P., Knoch, T. A., Grosveld, F. G., Cook, P. R. and Papantonis, A. (2012). Enhancers and silencers: an integrated and simple model for their function. Epigenetics and chromatin. 5(1): 1. DOI: 10.1186/1756-8935-5-1.
  13. Konda A.K., Narasimha R., Kompelli S.K. and Dinesh V.K., (2009). Codon optimization and PCR based synthesis of an antifungal plant defensin RsAFP2 for expressing in Castor. Journal of Oilseeds Research. 26: 210-213.
  14. Konda A.K., Narasimha R., Kompelli S.K. and Dinesh V.K., (2010). Modification of ThEn42 gene for improved tolerance against Botrytis in Castor. Journal of Oilseeds research. 27:15-17.
  15. Lee, T. I., and Young, R. A. (2000). Transcription of eukaryotic protein-coding genes. Annual Review of Genetics. 34(1): 77-137. DOI:10.1146/annurev.genet.34.1.77
  16. Li, Z. T., Jayasankar, S. and Gray, D. J. (2004). Bi-directional duplex promoters with duplicated enhancers significantly increase transgene expression in grape and tobacco. Transgenic Research. 13(2): 143-154. DOI:10.1023B:TRAG.0000026074.11859.77.
  17. Liu, X., Yang, W., Li, Y., Li, S., Zhou, X., Zhao, Q., et al. (2016). The intergenic region of the maize defensin-like protein genes Def1 and Def2 functions as an embryo-specific asymmetric bidirectional promoter. Journal of Experimental Botany. 67(14): 4403-    4413.DOI: 10.1093/jxb/erw226.
  18. Mehrotra, M., Sanyal, I., and Amla, D. V. (2011). RETRACTED ARTICLE: High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants. Plant Cell Reports. 30(9): 1603-1616. DOI:10.1007/s00299-011-1071-5.
  19. Makhzoum, A., Benyammi, R., Moustafa, K. and Trémouillaux-Guiller, J. (2014). Recent advances on host plants and expression cassettes’ structure and function in plant molecular pharming. BioDrugs. 28(2): 145-159. DOI:10.1007/s40259-013-0062-1.
  20. Patro, S., Maiti, I. B., and Dey, N. (2013). Development of an efficient bi-directional promoter with tripartite enhancer employing three viral promoters. Journal of Biotechnology. 163(3): 311-317. DOI:10.1016/j.jbiotec.2012.11.009.
  21. Pennacchio, L. A., Bickmore, W., Dean, A., Nobrega, M. A., and Bejerano, G. (2013). Enhancers: five essential questions. Nature Reviews Genetics. 14(4): 288. DOI:10.1038/nrg3458.
  22. Streatfield, S. J. (2007). Approaches to achieve high level heterologous protein production in plants. Plant Biotechnology Journal. 5(1): 2-15. DOI:10.1111/j.1467-7652.2006.00216.x.
  23. Strömvik, M. V., Sundararaman, V. P., and Vodkin, L. O. (1999). A novel promoter from soybean that is active in a complex developmental pattern with and without its proximal 650 base pairs. Plant Molecular Biology. 41(2): 217-231.DOI:10.1023A:1006312228617.
  24. Sugio, T., Matsuura, H., Matsui, T., Matsunaga, M., Nosho, T., Kanaya, S., et al. (2010). Effect of the sequence context of the AUG initiation codon on the rate of translation in dicotyledonous and monocotyledonous plant cells. Journal of Bioscience and Bioengineering. 109(2): 170-173. DOI: 10.1016/j.jbiosc.2009.07.009.
  25. Van der Geest, A. H., Welter, M. E., Woosley, A. T., Pareddy, D. R., Pavelko, S. E., et al. (2004). A short synthetic MAR positively affects transgene expression in rice and Arabidopsis. Plant Biotechnology Journal. 2(1): 13-26. DOI:10.1046/j.1467-7652.2003.00044.x.
  26. Wang, L., and Roossinck, M. J. (2006). Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants. Plant Molecular Biology. 61(4-5): 699-710. DOI:10.1007/s11103-006-0041-8.
  27. Xiong, A. S., Yao, Q. H., Peng, R. H., Duan, H., Li, X., Fan, H. Q., et al. (2006). PCR-based accurate synthesis of long DNA sequences. Nature Protocols. 1(2): 791. DOI:10.1038/nprot.2006.103. 

Global Footprints