Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 41 issue 4 (august 2018) : 537-542

Application of DNA markers in determination of fusarium resistance and genetic diversity in chickpea

S.M. Babayeva, J.A. Nasibova, Z.I. Akparov, K.B. Shikhaliyeva, A.D. Mammadova, V.I. Izzatullayeva, M.A. Abbasov
1Genetic Resources Institute of ANAS, Azadlig ave 155, Az1106, Baku, Azerbaijan.
  • Submitted18-01-2018|

  • Accepted13-03-2018|

  • First Online 16-07-2018|

  • doi 10.18805/LR-407

Cite article:- Babayeva S.M., Nasibova J.A., Akparov Z.I., Shikhaliyeva K.B., Mammadova A.D., Izzatullayeva V.I., Abbasov M.A. (2018). Application of DNA markers in determination of fusarium resistance andgenetic diversity in chickpea. Legume Research. 41(4): 537-542. doi: 10.18805/LR-407.
Genetic diversity and fusarium resistance of 50 cultivated chickpea genotypes was studied using ISSR and RAPD markers. The results of both marker systems were consistent with each other, but was somewhat higher for RAPDs. A total of 48 fragments were obtained with both markers together, 32.7% of which were polymorphic. Molecular characterisation through ISSR and RAPD data indicated low genetic variation (GDI=0.39; PIC=0.21) among local and introduced chickpea accessions. The genetic distance values ranged from 0 to 0.134, with a mean of 0.05. The low genetic diversity indicated that new genotypes must be introduced to increase the variability of chickpea germplasm in Azerbaijan. As a result of screening for resistance to fusarium most of genotypes were found to have 600 bp fragment of OPJ20 linked with Foc01 resistance gene, while none of them had resistance gene to Foc4. The results could provide information for future chickpea breeding activities and conservation. 
  1. Abbo, S., Berger, J., Turner, N. (2003). Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Functional Plant Biology 30: 1081–1087.
  2. Aggarwal, H., Rao, A., Kumar, A., Singh, J., Rana, J.S.,( Naik, P.K., Chhokar, V. (2015). Assessment of genetic diversity among 125 cultivars of chickpea (Cicer arietinum L.) of Indian origin using ISSR markers. Turk. J. Bot., 39: 218-226.
  3. Àmirov, L.A., Ìirzoyev, R.S., Hasanova, G.M., Ìammadov H.I., Jangirov A.A., Shikhaliyeva K.B., Babayeva S.M., Hasanova S.G. (2016). Evaluation of chickpea genopool and results of breeding. Proceedings of Research Institute of Crop Husbandry, 26: 34-38.
  4. Benko-Iseppon, A.M., Winter, P., Huettel, B., Staginnus, C., Muehlbauer, F. J., Kahl, G. (2003). Molecular markers closely linked to fusarium resistance genes in chickpea show significant alignments to pathogenesis-related genes located on Arabidopsis chromosomes 1 and 5. Theoretical and Applied Genetics, 107(2): 379-386.
  5. Bhagyawant, S.S., Gupta, N., Gautam, A., Chaturvedi, S.K., Shrivastava, N. (2015). Molecular diversity assessment in chickpea through RAPD and ISSR markers. World Journal of Agricultural Research. 3(6):192-7.
  6. Cobos, M.J., Fernández, M.J., Rubio, J., Kharrat, M., Moreno, M.T., Gil, J., Millán, T. (2005). A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli× Desi crosses: location of genes for resistance to fusarium wilt race 0. Theoretical and Applied Genetics, 110(7): 1347-1353.
  7. Doyle, J.J. and Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 19: 11-15.
  8. Ghaffari, P., Talebi, R., Keshavarzi, F. (2014). Genetic diversity and geographical differentiation of Iranian landrace, cultivars, and exotic chickpea lines as revealed by morphological and microsatellite markers. Physiology and Molecular Biology of Plants, 20(2): 225-233. 
  9. Hasanova, S., Akparov Z., Mammadov, A., Amirov, L., Babayeva, S., Nasibova, J., Mukhtarova, Z., et al. (2017). Genetic diversity of chickpea genotypes as revealed by ISSR and RAPD markers. Genetika, 49(2): 415-423.
  10. Iruela, M., Rubio, J., Cubero, J.I., Gil, J., Milan, T. (2002). Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theor Appl Genet, 104: 643–651.
  11. Jayalakshmi, V., Kiran Kumar Reddy, C., Jyothirmayi, G., Trivikrama Reddy, A. (2016). Studies on genetic diversity in chickpea utilizing morphological and total seed protein markers. Legume Res, 39(2): 323-325.
  12. Kala, C., Gangopadhyay, S., Godara, S.L. (2016). Eco-friendly management of wilt caused by Fusarium oxysporum f. sp. Ciceri in chickpea. Legume Res, 39(1): 129-134.
  13. Koinain, S.A., Hegde, V.S., Bharadwaj, C. (2016). Genetic diversity analysis among selected short duration chickpea cultivars and breeding lines based on STMS markers. Legume Res, 39(6):851-859.
  14. Kumar, R., Yadav, R., Soi, S., Yadav, S.S., Yadav, A., Mishra, J.P., Mittal, N., Yadav, N., et al. (2017). Morpho-molecular characterization of landraces/wild genotypes of Cicer for Biotic/Abiotic stresses. Legume Research: An International Journal, 40(6): 974-984.
  15. Nguyen, T.T., Taylor, P.W., Redden, R.J., Ford, R. (2004). Genetic diversity estimates in Cicer using AFLP analysis. Plant Breed, 123:173–179.
  16. Perrier, X. and Jacquemoud-Collet, J.P. (2006). DARwin software http://darwin.cirad.fr/darwin.
  17. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., Rafalsky, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed., 2: 225-238. 
  18. Prevost, A. and Wilkinson, M.J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet., 98: 107-112.
  19. Roldan-Ruiz, I., Dendauw, J., Vanbockstaele, E., Depicker, A., De Loose, M. (2000). AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol. Breed., 6:125–134.
  20. Rubio, J., Moussa, E., Kharrat, M., Moreno, M.T., Milla´, N.T. And Gil, J. (2003). Two genes and linked RAPD markers involved in resistance to Fusarium oxysporum f. sp. ciceris race 0 in chickpea. Plant Breeding, 122:188–91.
  21. Singh, R., Prasad, C.D., Singhal, V., Randhawa, G.J. (2002). Analysis of genetic diversity in Cicer arietinum L using Random Amplified polymorphic DNA markers. Journal of Plant Biochemistry and Biotechnology, 11(2): 109-112.
  22. Singh, R., Sharma, P., Varshney, R.K., Sharma, S.K., Singh, N.K. (2008). Chickpea improvement: role of wild species and genetic markers. Biotechnology and Genetic Engineering Reviews, 25(1): 267-314.
  23. Sudupak, M.A. (2004). Inter and intra-species inter simple sequence repeat (ISSR) variations in the genus Cicer. Euphytica, 135: 229–238.
  24. Weir, B.S. (1990). Genetic Data Analysis. Methods for Discrete Population Genetic Data., Sinauer Associates, Suderland, 377 p. 

Editorial Board

View all (0)