Comparative biological sensitivity and mutability of chemo-mutagens in lentil (Lens culinaris Medik)

DOI: 10.18805/LR-4058    | Article Id: LR-4058 | Page : 26-30
Citation :- Comparative biological sensitivity and mutability of chemo-mutagens in lentil (Lens culinaris Medik).Legume Research.2021.(44):26-30
Mohammad Rafiq Wani botanyrafiq@gmail.com
Address : Department of Botany, Abdul Ahad Azad Memorial Degree College, Bemina-190 018, Cluster University Srinagar, Jammu and Kashmir, India.
Submitted Date : 10-07-2018
Accepted Date : 6-04-2019


Present investigation was carried out using three different categories of chemical mutagens viz., ethylmethane sulphonate (EMS)–an alkylating agent, hydrazine hydrate (HZ)–a base analogue and sodium azide (SA) – a respiratory inhibitor on two varieties viz., Pant L-406 and Type-8 of lentil to study the immediate biological damage induced by the mutagens and to determine the sensitivity of biological material in question. Biological damage induced in M1 generation was estimated in terms of seed germination, seedling height and pollen fertility. A dose dependent reduction with increasing concentrations of the mutagens for all these parameters was observed in both the varieties. The inhibition was more severe at the highest concentration of all the three mutagens under study. Variety Type-8 was found to be more sensitive than the var. Pant L-406 with respect to the mutagens utilized. Reduction in seed germination, seedling growth and pollen fertility in M2 generation was reasonably less as compared to M1 generation. 


Biological damage Chemical mutagens Induced mutagenesis Lentil Variability.


  1. Amin, R., Wani, M. R., Raina, A., Khursheed, S. and Khan, S. (2019). Induced morphological and chromosomal diversity in the mutagenized population of black cumin (Nigella sativa L.) using single and combination treatments of gamma rays and EMS. Jordan Journal of Biological Sciences. 12: 23-30.
  2. Ananthaswamy, H. N., Vakil, U. K. and Srinivasan, A. (1971). Biochemical and physiological changes in gamma irradiated wheat during germination. Radiation Botany. 11: 1-12.
  3. Barshile, J. D., Auti, S. G., Dalve, S. C. and Apparao, B. J. (2006). Mutagenic sensitivity studies in chickpea employing SA, EMS and gamma rays. Indian Journal of Pulses Research. 19: 43-46.
  4. Bhosale, U. P., Hallale, B. V. and Dubhashi, S. V. (2013). M1 generation studies in urdbean [Vigna mungo (L.) Hepper]. Advances in Applied Science Research. 4: 95-97.
  5. Cherry, J. H., Hagemann, R. H. and Hanson, J. B. (1962). Effect of X-irradiation on nucleic acids in Zea mays. II. On the level of ribonuclease activity in growing seedlings. Radiation Research. 17: 740-754.
  6. Chrispeels, M. J. and Varner, J. E. (1967). Gibberellic acid induced synthesis and release of L-amylase and ribonuclease by isolated barley aleurone layers. Plant Physiology. 42: 396-406.
  7. Das, M. and Kundagrami, S. A. (2018). Screening for high productive salt tolerant mutant M4 lines in chickpea (Cicer arietinum L.). Legume Research. 41: 356-362.
  8. Gaul, H. (1970). Mutagen effects observed in first generation. In: Manual on Mutation Breeding, Technical Report Series Number 119, FAO/IAEA Vienna, Austria. 85-98.
  9. Gottschalk, W. and Klein, H. D. (1976). The influence of mutant genes on sporogenesis. A survey on the genetic control of meiosis in Pisum sativum. Theoretical and Applied Genetics. 48: 23-24.
  10. Goud, J. V. and Nayar, K. M. D. (1968). Effect of irradiation on seedlings of methi. Mysore Journal of Agricultural Sciences. 11: 53-55.
  11. Khan, S. and Wani, M. R. (2006). MMS and SA induced genetic variability for quantitative traits in mungbean. Indian Journal of Pulses Research. 19: 50-52.
  12. Khan, S., Wani, M. R. and Parveen, K. (2006a). Quantitative variability in mungbean induced by chemical mutagens. Legume Research. 29: 143-145.
  13. Khan, S., Wani, M. R. and Parveen, K. (2006b). Sodium azide induced high yielding early mutant in lentil. Agricultural Science Digest. 26: 65-66.
  14. Kleinhofs, A., Hodgdon, A. L., Owais, W. M. and Nilan, R. A. (1984). Effectiveness and safety of sodium azide mutagenesis. In: Proceedings of Induced Mutations for Crop Improvement in Latin America, FAO/IAEA Seminar Lima Peru 1982, IAEA, TECDOC-305. 53-58.
  15. Kumar, G. and Singh, V. (2003). Comparative analysis of meiotic abnormalities induced by gamma rays and EMS in barley. Journal of Indian Botanical Society. 82: 19-22.
  16. Kurobane, I. H., Yamaguchi, H., Sander, C. and Nilan, R. A. (1979). The effects of gamma irradiation on the production and secretion of enzymes and enzymatic activities in barley. Environmental and Experimental Botany. 19: 75-84. 
  17. Laskar, R. A., Laskar, A. A., Raina, A., Khan, S. and Younus, H. (2018). Induced mutation analysis with biochemical and molecular characterization of high yielding lentil mutant lines. International Journal of Biological Macromolecules. 109: 167-179.
  18. Meherchandani, M. (1975). Effect of gamma radiation on dormant seeds of Avena sativa L. Radiation Botany. 15: 439-445.
  19. Mitra, P. K. and Bhowmik, G. (1998). Effect of mutagens on some biological parameters of Nigella sativa L. Advances in Plant Sciences. 11: 155-161.
  20. Muthusamy, A. and Jayabalan, N. (2002). Effect of mutagens on pollen fertility of cotton (Gossypium hirsutum L.). Indian Journal of Genetics and Plant Breeding. 62: 187.
  21. Natarajan, A. T. and Shiva Shankar, G. (1965). Studies on modification of mutation responses of barley seeds to ethylmethane sulphonate. Z. Vererburgstehre. 43: 69-76.
  22. Nilan, R. A., Sideris, E. G., Kleinhofs, A., Sander, C. and Konzak, C. F. (1973). Azide – a potent mutagen. Mutation Research. 17: 142-144.
  23. Ramachander, L., Shunmugavalli, N., Muthuswamy, A. and Rajesh, S. (2018). Frequency of viable mutants in M2 and M3 generations of black gram [Vigna mungo (L.) Hepper] through induced mutation. International Journal of Current Microbiology and Applied Sciences. 7: 1996-1999.
  24. Sharma, A. K., Singh, V. P. and Singh, R. M. (2006). Efficiency and effectiveness of the gamma rays, EMS and their combinations in urdbean. Indian Journal of Pulses Research. 19: 111-112.
  25. Shekar, G. C. and Pushpendra (2017). Induced mutations in soybean (Glycine max L.). Legume Research. 40: 1012-1019.
  26. Sideris, E. G., Nilan, R. A. and Bogyo, T. P. (1973). Differential effect of sodium azide on the frequency of radiation induced chromosome aberrations vs. the frequency of radiation induced chlorophyll mutations in Hordeum vulgare. Radiation Botany. 13: 315-    322.
  27. Sinha, S. S. N. and Godward, M. B. E. (1972). Radiation studies in Lens culinaris. Indian Journal of Genetics and Plant Breeding. 32: 331-339.
  28. Taziun, T., Laskar, R. A., Amin, R., Khan, S. and Parveen, K. (2018). Effects of dosage and durations of different mutagenic treatment in lentil (Lens culinaris Medik.) cultivars Pant L 406 and DPL 62. Legume Research. 41: 500-509.
  29. Usuf, K. K. and Nair, P. M. (1974). Effect of gamma irradiation on the indole acetic acid synthesizing system and its significance in sprout inhibition of potatoes. Radiation Botany. 14: 251-256.
  30. Van Harten, A. M. (1998). Mutation Breeding Theory and Practical Applications. Cambridge University Press, Cambridge.
  31. Verma, A. K., Dhanasekar, P., Choudhary, S., Meena, R. D. and Lal, G. (2018). Estimation of induced variability in M2 generation of fennel (Foeniculum vulgare Mill.). Journal of Pharmacognosy and Phytochemistry. 7: 430-436.
  32. Wani, M. R. (2017). Induced chlorophyll mutations, comparative mutagenic effectiveness and efficiency of chemical mutagens in lentils (Lens culinaris Medik). Asian Journal of Plant Sciences. 16: 221-226. 
  33. Wani, M. R. (2018). Early maturing mutants of chickpea induced by chemical mutagens. Indian Journal of Agricultural Sciences. 88: 635-640.
  34. Wani, M. R., Khan, S. and Kozgar, M. I. (2011). An assessment of high yielding M3 mutants of green gram [Vigna radiata (L.) Wilczek]. Romanian Journal of Biology. 56: 29-36. 

Global Footprints