Divergence analysis of black gram (Vigna mungo L.) for grain yield and yield components

DOI: 10.18805/LR-3911    | Article Id: LR-3911 | Page : 646-653
Citation :- Divergence analysis of black gram (Vigna mungo L.) for grain yield and yield components.Legume Research-An International Journal.2019.(42):646-653
M.Z. Shamim and Anjana Pandey apandeymnnit70@gmail.com
Address : Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad-211 004, Uttar Pradesh, India.
Submitted Date : 10-07-2017
Accepted Date : 24-11-2017

Abstract

Thirty-two black gram genotypes were evaluated using twelve quantitative and fifteen qualitative traits at Motilal Nehru National Institute of Technology (MNNIT), Allahabad, India to determine genetic divergence using important yield and yield contributing traits. The number of pods plant-1, peduncle length, harvest index and biomass yield plant-1 are important traits affecting grain yield response in black gram. The quantitative traits like; pod length, number of pods plant-1, 100-grain weight as well as qualitative traits like; stem pubescence, leaf pubescence, pod pubescence, pre mature pod colour and plant growth habit which have major contribution in the genetic divergence of black gram. The number of pods plant-1 is most important grain yield contributing and genetic divergence developing traits. The genotypes were classified into six clusters based on Euclidean distance. The genotypes belonging to cluster I, II and III were highly diverse than genotypes lies in cluster IV, V and VI. The genotypes IPU 99-176, UH 82-51, GE 154, IPU 99-3 and NG 2119 had good potential to develop high yielding transgressive segregants. The wide genetic diversity is present in black gram. The present study will be much helpful for selection of the parental lines to develop good grain yield producing black gram cultivar in accordance with changing climate.  

Keywords

Divergence Hybridization Grain Vigna Yield.

References

  1. Al-Jibouri, H. A., Muller, P.A. and Robinson, H.P. (1958). Genetic and environmental variance and covariance in an upland cotton crop of interspecific origin. Agron. J., 30: 633-636.
  2. Burton, G.W. and Devane, E.W. (1953). Estimating heritability in tall fescue (Fastuca arundinaceae) replicated clonal material. Agron. J., 45: 478-481.
  3. Chauhan, M.P., Mishra, A.C. and Singh, A.K. (2007). Correlation and path analysis in urd bean. Legume. Res., 30(3): 205-208.
  4. Dewey, D.R. and Lu, K.K. (1959). A correlation and path coefficient analysis of components of crested wheat grass seed production. Agron. J., 51: 515-518.
  5. Ghafoor, A., Ahmed, Z. and Sharif. A. (2000). Cluster analysis and correlation in black gram germplasm. Pak. J. Bio. Sci., 3(5): 836-839.
  6. Ghafoor, A., Sharif, A., Ahmad, Z., Zahid, M.A. and Rabbani. M.A. (2001). Genetic diversity in black gram [Vigna mungo (L). Hepper].Field. Crops. Res., 69: 183-190.
  7. Gomez, K.A. and Gomez A.A. (1984). Statistical Procedures for Agriculture Research (second Ed). John Wiley & Sons, Inc., U.K.pp 199.
  8. Gowda, M.B. Prakash, J.C. and Shanthala J. (1997). Estimates of genetic variability and heritability in black gram. Crop. Res., 13(2): 369-372.
  9. Gupta, S. (2012). Project Coordinator’s Report. All India Coordinated Research Project on MULLaRP, Kanpur, India.
  10. Jayamani, P and Sathya,M. (2013). Genetic diversity in pod characters of blackgram (Vigna mungo l. Hepper). Legume Res., 36 (3): 220-223.
  11. Johnson, H.W., Robinson, H.F. and Comstock, R.E. (1955). Estimates of genetic and environmental variability in soyabeans. Agron. J., 47: 314-318. 
  12. Kishor, C., Prasad, Y. Haider, Z.A. Kumar, R. and Kumar, K. (2008). Quantitative analysis of upland rice. Oryza., 45(4): 268-272.
  13. Konda, C.R., Salimath, P.M. and Mishra, M.N. (2008). Correlation and path coefficient analysis in black gram (Vigna mungo L. Hepper). Legume. Res., 31 (3): 202-205.
  14. Malik, M.F.A., Awan, S.I., and Niaz, S. (2008). Comparative study of quantitative traits and association of yield and its components in black gram genotypes. Asian. J. Plant. Sci., 7 (1): 26-29.
  15. Mathivathana, M.K., Shunmugavalli, N. Muthuswamy, A. and Vijulan Harris, C. (2015). Correlation and path analysis in black gram. Agric. Sci. Digest., 35 (2): 158-160. 
  16. Mehra, R., Tikle, A.N., Saxena, A., Munjal, A., Rekhakhandia and Singh, M. (2016). Correlation, path-coefficient and genetic diversity in black gram (Vigna mungo L. Hepper). Int. Res. J. Plant. Sci., 7(1): 1-11.
  17. Naga, N., Sharma, S.K. and Kant, S.K. (2006). Agronomic evaluation of some induced mutants of urd bean [Vigna mungo (L.) Hepper]. SABRAO. J. Breed. Gen., 38: 29-38.
  18. Pandey, M.K., Roorkiwal, M., Singh,V.K., Ramalingam, A. Kudapa, H., Thudi, M., et al. (2016). Emerging genomic tools for legume breeding: current status and future prospects. Front. Plant. Sci., 7: article, 455. doi:10.3389/fpls.2016.00455
  19. Panigrahi, K. K., Mohanty, A. and Baisakh, B. (2014). Genetic divergence, variability and character association in landraces of black gram (Vigna mungo l. hepper) from Odisha. J. Crop. Weed., 10(2):155-165.
  20. Panse, V.G. (1957). Genetics of quantitative characters in relation to plant breeding. Indian. J Genet., 17(2): 318-328.
  21. Paroda, R.S., and Thomas. T.A. (1987). Genetic resources of mungbean [Vigna radiata (L.) Wilczek] in India. In: mungbean, Proceed Sec Int Symp 16-20 November, Bangkok, Thailand.
  22. PPV & FR. (2007). Guidelines for the conduct of test for distinctiveness, uniformity and stability on black gram (Vigna mungo (l.) hepper). Protection of Plant Varieties and Farmer’s Rights Authority Government of India, New Delhi.
  23. Raika, B.R., Singh, M. Gupta, S.C., Patel, K.M. and Tikka, S.B.S. (2002). Studies of correlation and path coefficient in black gram. Progressive. Agric., 2(2): 166-168.
  24. Reni, Y.P., Rao, Y.K., Satish, Y. and Babu. J.S. (2013). Estimates of genetic parameters and path analysis in black gram [Vigna mungo (L.) Hepper]. Int. J. Plant. Animal. Env., 3(4): 231-234.
  25. Roy, D., Kishore, A. Joshi, A. P.K. and Mishra. B. (2016). Pulses for food and nutritional security: The technology perspective. Indian. J. Genet., 76(4): 375-387.
  26. Shamim, M.Z., Manzar, H. Sharma, V.K. and Kumar, P. (2016). Microsatellite marker based characterization and divergence analysis among rice varieties. Indian. J. Biotech., 15: 182-189.
  27. Shifriss, C. and Sacks, J.M. (1980). The effect of distance between parents on yield of sweet pepper x hot pepper hybrids, Capsicum anmum L. in single harvest. Theor. Applied. Genet., 58: 253-256.
  28. Shivade, H.A., Rewale, A.P. and Patil, S.B. (2011). Correlation and path analysis for yield and yield components in black gram [Vigna mungo (L.) Hepper]. Legume. Res., 34 (3): 178- 183.
  29. Usharani, K.S. and Kumar, C.R.A. (2016). Estimation of variability, heritability and genetic advance in mutant populations of black gram [Vigna mungo (L.) Hepper]. SABRAO. J. Breed. Gen., 48 (3) : 258-265.
  30. Vavilov, N.I. (1926). Studies on the origin of cultivated plants. Bul.l Appl. Bot. Pla. Breed., 16 (2): 1-248.
  31. Veeramani, N.M., Venkatesan, P. Thangavel. and Ganesan, J. (2005). Genetic variability, heritability and genetic advance analysis in segregating generation of black gram [Vigna mungo (L). Hepper]. Legume. Res., 28 (1): 49 - 51.
  32. Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. J. American. Statistical. Association., 58: 236-244. 

Global Footprints