Morpho-molecular characterization of landraces/wild genotypes of Cicer for Biotic/ Abiotic stresses

DOI: 10.18805/lr.v0iOF.9100    | Article Id: LR-3701 | Page : 974-984
Citation :- Morpho-molecular characterization of landraces/wild genotypes of Cicer for Biotic/ Abiotic stresses.Legume Research-An International Journal.2017.(40):974-984
Rajendra Kumar, Renu Yadav, Sangeeta Soi, Srinivasan, S.S.Yadav, Ashwani Yadav, J.P.Mishra, Neha Mittal, Neelam Yadav, Ashwani Kumar, Vaishali, Hemant Yadav and Hari D Upadhyaya rajendrak64@yahoo.co.in
Address : Department of Biotechnology, S.V.P. University of Agriculture & Technology, Meerut - 250110 (Uttar Pradesh) India
Submitted Date : 15-03-2016
Accepted Date : 1-06-2017

Abstract

Chickpea is one of the most important pulse crops in the world. However, chickpea productivity is not high enough to fulfill the requirements of an ever-increasing demand. One of the major constraints in the chickpea improvement is the narrow genetic base in the cultivated chickpea (Cicer arietinum L) and its sexual incompatibility with other Cicer species. Knowledge of molecular characterization, genetic diversity, and relatedness in the germplasm is a prerequisite for varietal registration, protection and overall crop improvement. The present study reports molecular characterization of 75 genotypes using 46 STMS markers. All the STMS loci were found to be highly polymorphic. A total of 132 alleles were found with an average of 2.87 per locus. The highest numbers of alleles were observed with marker TA-21. A cluster analysis arranged these 75 genotypes in 7 clusters. The genotypes ICRISAT 3073 and Pusa 212 showed remarkable genetic similarity (0.796) and the largest genetic distance was observed between C. reticulatum wild-1 and CSG 9505 (0.547). The present analysis provides an insight into the interrelationship among the genotypes and highlights the requirement for effective supplementation of morphological data with additional molecular markers to efficiently unearth the genetic inter-relationship among the genotypes.

Keywords

Abiotic Biotic Chickpea Molecular characterization Polymorphism STMS.

References

  1. Afzal, M.A., Bakr, M.A., Luna, N.K., Rahman, M.M., Hamid, A., Haque M.M., and Shanmugasundaram, S. (2003). Registration of ‘Barimung- 5’ Mungbean. Crop Sci., 43: 2304–2305.
  2. Ahloowalia, B., Maluszynski M., and Nichterlein, K. (2004). Global impact of mutation-derived varieties. Euphytica, 135: 187–
  3. Aney, A. (2013). Effect of gamma irradiation on yield attributing characters in two varieties of pea (Pisum sativum L.). Int. J. Life Sci. 1(4): 241-247.
  4. Auti, S.G. (2012).Induced Morphological and quantitative mutations in mungbean. Bioremediation, Biodiversity and Bioavailability. Global Science Books. 6(special issue 1), 27-39.
  5. Chen, L., Markhart, A.S., Shanmugasundaram and Lin, T. (2008). Early developmental and stress responsive ESTs from mungbean, (Vigna radiata L. Wilczek), seedlings. Plant Cell Reports. 27: 535–552.
  6. Chopra, V. (2005). Mutagenesis: Investigating the process and processing the outcome for crop improvement. Current Sci. 89: 353–    359.
  7. Hamid, A., Afzal, M., Haque M. and Shanmugasundaram S. (2004). Registration of ‘BUmug-1’ Mungbean. Crop Sci. 44: 1489.
  8. Hanafiah, D.S., Trikoesoemaningtyas S. Y. and Wirnas D. (2010). Induced mutations by gamma ray irradiation to Argomulyo soybean (Glycine max) variety. Nusantara Bioscience Natur Indonesia. 2(3): 121-125.
  9. Jain, S. (2005). Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell Tissue and Organ Culture. 82: 113–123.
  10. Khan, S. and Goyal S. (2009). Improvement of mungbean varieties through induced mutation. African J. of Plant Science. Vol. 3 (8). 174-180. 
  11. Kozgar, M.I., Goyal S., and Khan S. (2011). EMS induced mutational variability in vigna radiata and vigna mungo. Research J. of Bot. 6(1), 31-37.
  12. Kwon, S.H. and Oh J.R. (1983). Mungbean mutation breeding in Korea. Radiation Agric. Div. KAERI, South Korea. Mutation Br. Newl. 21: 4. 
  13. Kumar, A. and. Mishra M.N. (2004). Gamma-rays irridiation under dry, pre and post soaked condition on yield and its attributes in M2 population of Urdbean. Advances in Plant Sciences. 17:475-478.
  14. Kumar, A., Parmhansh P. and Prasad. R. (2009). Induced chlorophyll and morphological mutations in mungbean (Vigna radiata L. Wilczek). Legume Research. 32(1), 41-45.
  15. Lavanya,R., Yadav, L., Suresh, B., Abu G. and Jyotipaul P. (2011). Sodium azide mutagenic effect on biological parameters and induced genetic variability in mungbean. J. of Food Legumes. 24(1),46-49.
  16. Patil, G.P. and Wakode M.M. (2011). Induced genetic variability for quantitative traits in M2 generation in soyabean by mutagens. Current Botany. 2(1), 10-14.
  17. Pawar, S.E. (2011). Impact of mutant varieties of blackgram in realizing improved productivity. Mutation Breeding Newsletter. 45,7-9.
  18. Pierre, T., Laurent C., Andree H., Alexandra P., Emile K., Georges B. and Claire P.(2003). A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol. 3: 1–10.
  19. Roslim,D.I., Herman and Fiatin I.. (2015). Lethal Dose 50(LD50) of mungbean (Vigna radiata L. Wilczek) cultivar Kampar. SABRAO J. of Breed. and Gen. 47(4), 510-516.
  20. Sangsiri, C., Sorajjapinun W. and Srinives P. (2005). Gamma Radiation Induced Mutations in Mungbean. Sci. Asia. 31: 251–255.
  21. Sarkar,K.K., Maji A. and Roy S.S. (2009). Performance of some elite mungbean[Vigna radiata(L.) Wilczek] mutant families in M7 generation. Journal of Crop and Weed. 5(1) : 174-177.
  22. Sharma, D.P. and Singh B.L. (1983). A high yielding mungbean variety through mutation breeding. Agric. & Tech. Pantanagar. Mutation Br. News. No. 22, 1-2.
  23. Singh, B.B. (2006). Project coordinator report, All India coordinated Research Project on MULLaRP, Annual group meet, 2-4 May, Indian Institute of pulses Research, Kanpur: 12.
  24. Songsri, P., Suriharn, B., Sanitchon, J., Srisawangwong, S., Kesmala T. (2011). Effects of gamma radiation on germination and growth characteristics of physic nut (Jatropha curcas L.). J. Biol. Sci. 11(3): 268-274.
  25. Tah, P.R. and Saxena S. (2009). Induced synchrony in pod maturity in mungbean(Vigna radiata). Int. J. of Agric. & Biol. 11:321-324. 
  26. Yadav, R.D.S. and Singh P.D. (1988). Induced synchronized mutant in mungbean. Nat. Acad. Sci. Letters. 11(9) : 271.
  27. Wongpiyasatid, A., Chotechuen, S., Hormchan, P., Ngampongsai S. and Promcham W. (2000). Induced Mutations in Mungbean Breeding: Regional Yield Trial of Mungbean Mutant Lines. Kasetsart J.Nat.Sci. 34:443-449. Ahmed, Z.,Mumtaz, A.S. and Ghafoor, A. (2014). Marker Assisted Selection (MAS) for Chickpea FusariumOxysporum Wilt Resistant Genotypes using PCR Based Molecular Markers, Molecular Biology Reports ,10: 6755-6762.
  28. Botstein, D., White, R.L. and Skolnick, M. (1980). Construction of a genetic-linkage map in man using restriction fragment length polymorphisms, Am J Hum Genet, 32:314-331.
  29. Choumane, W., Winter, P., Weigand, F. and Kahl, G. (2000). Conservation and variability of sequence-tagged microsatellite sites (STMSs) from chickpea (CiceraerietinumL.) within the genus Cicer,Theoretical and Applied Genetics,101: 269–278.
  30. Diapari, M. and Sindhu, A.(2014). Genetic Diversity and Association Mapping of Iron and Zinc Concentrations in Chickpea (CicerarietinumL.),Genome, 8:459-468.
  31. Doyle, J.J.and Doyle, J.L. (1987). A rapid DNA isolation procedure from small quantities of fresh leaf tissues,Phytochem. Bull.,19: 11-15.
  32. Fahmy, F.I., Taha, O. and Eiashry, A.N.(2015). First Genome Analysis and Molecular Characterization of Chickpea Chlorotic Dwarf Virus Egyptian Isolate Infecting Squash,VirusDisease, 2: 33-41.
  33. FAOSTAT. (2008). Food and Agricultural Organization (FAO), Bulletin of Statistics [online] at http://faostat.org/    faostatcollectionsubset =agriculture
  34. FASOSTAT. (2013). [online] Available at http://faostat.fao.org/site/339/default.aspx, 2013
  35. Flandez-Galvez, H., Ford, R., Pang, E. C. K. and Taylor, P. W. J. (2003).An intraspecific linkage map of the chickpea (Cicerarietinum L.) genome based on sequence-tagged microsatellite site and resistance gene analog markers,Theor. Appl. Genet., 106: 1447–1456.
  36. Ganguly, A. K., Chawla, G., Yadav, R. and Kumar, R. (2008).STMS profiling of chickpea (Cicerarietinum) with regards to nematode resistance,I. J. Nematology, 38: 209-217.
  37. Garg, R., Bhattacharjee, A. and Jain, M. (2015). Genome-Scale Transcriptomic insights into Molecular Aspects of Abiotic Stress Responses in Chickpea,Plant Molecular Biology Reporter, 3:388-400.
  38. Ghaffari, P., Talebi, R. and Keshavarzi, F. (2014). Genetic diversity and geographical differentiation of Iranian landrace, cultivars, and exotic chickpea lines as revealed by morphological and microsatellite markers, Physiol. Mol. Biol. Plants,20: 225-233.
  39. Goldstein, D.B. and Pollock, D.D. (1997). Launching microsatellites: a review of mutation process and methods of phylogenetic inheritance,Journal of Heredity,88:335-342.
  40. Hajibarat, Z.,Saidi, A. and Hajibarat, Z. (2015). Characterization of Genetic Diversity in Chickpea using SSR Markers, Start Codon Targeted Polymorphism (SCoT) and Conserved DNA-Derived Polymorphism (CDDP), Physiology and Molecular Biology of Plants,3:365-373.
  41. Hegde, V.S. (2014). Morphology and Genetics of a New Found Determinate Genotype in Chickpea, Euphytica, 1: 35-42.
  42. Hüttel B, Winter P, Weising K, Choumane W, Weigand F. and Kahl G. (1999).Sequence-tagged microsatellite site markers for chickpea (Cicerarietinum L.), Genome,42:210-7.
  43. Jannatabadi, A.K. and Talebi, R. (2014). Genetic Diversity of Iranian Landrace Chickpea (CicerArietinum L.) Accessions from Different Geographical Origins as Revealed by Morphological and Sequence Tagged Microsatellite Markers,Journal of Plant Biochem.and Biotech., 2:225-229.
  44. Jodha, N.S. and Subbarao, K.V. (1987). Chickpea: World Importance and distribution..In: Saxena,M.C. and Singh,K.B.(ed). The Chickpea, CABInternational,WelingFord,U.K. pp 1-10.
  45. Joshi, S.A. and Reddy, K.S. (2014). Diversity Study in Chickpea (CicerArietinum L.) using REMAP, SSR and ISSR Markers,Journal of Food Legumes, 4:281-288.
  46. Li, H.,Rodda, M. and Gnanasanbandam, A. (2015). Breeding for Biotic Stress Resistance in Chickpea: Progress and Prospects,Euphytica, 2:257-288.
  47. Madrid, E. and Seoane, P. (2014).Genetic and Physical Mapping of the QTLAR3 Controlling Blight Resistance in Chickpea (CicerArietinum L),Euphytica ,1:69-78.
  48. Nagahavi, M.R.,Pouraboughadareh,A. and Khalili.M. (2013).Evaluation of Drought Tolerance Indices for Screening Some of Corn (Zea mays L.) Cultivars under Environmental Conditions,Not Sci Biol.,5: 388-393.
  49. Rohlf, F.J. (1989).NTSYS-pc.Ver.1.70.Exeter, Setauket, New York.
  50. Rupela, O.P. (1987). Nodulation and nitrogen fixation in chickpea. In: Saxena, M.C. and Singh, K.B.(ed) The Chickpea, CAB International/ICARDA. Wallingford, UK, pp 191-206. 
  51. Senior, M.L., Murphy, J.P., Goodman, M.M. and Stuber, C.W. (1998).Utility of SSR for determining genetic similarities and relationships in maize using an agarose gel system,Crop Sci.,38: 1088-1098.
  52. Singh, N. P. (2010). Project coordinator’s report 2009–10. All India coordinated research project on chickpea. Indian Institute of Pulses Research, Kanpur, India. 
  53. Singh, R. and Kumari, N. (2013).Molecular Analysis for Genetic Structure of Biotic and Abiotic Stress Resistant Genotypes in Chickpea (CicerArietinum L.),Indian Journal of Biotech., 4:537-540
  54. Singh, R., Kumari, N., Upadhyaya, H.D., Yadav, R., Vaishali, ChosiInsoo and Kumar, R. (2013). Molecular analysis for genetic structure of biotic and abiotic stress resistant genotypes in chickpea (CicerarietinumL.), Indian Jour. of Biotech.,12:537-540.
  55. Singh, R., Singh, R.K., Prerna, Senger, R. S. and Kumar, R. (2012). Molecular Diversity Analysis of selected Drought Resistant Chickpea (CicerarietinumL.),Vegetoes.,25(1):111-116.
  56. Singh, R., Kumar, R. and Kumari, N. (2012).Genetic diversity analysis of chickpea using STMS marker, Prog. Agric.-An Int. J.,12 (1): 35-40.
  57. Singh, R., Kumari, N and Kumar, R. (2011).HPLC based determination of oligosaccharides and diversity analysis in Chickpea (CicerarietinumL.),Plant Archives, 11(1): 543-551.
  58. Sneath, P.H.A. and Sokal, R.R. (1973).Numerical taxonomy .WH Truman & Co, San Francisco. 
  59. Soi, S., Chauhan, U.S., Yadav, R., Kumar, J., Yadav, S.S., Yadav, H. and Kumar. (2014). RSTMS based diversity analysis in chickpea (Cicerarietinum L.),New Agriculturist, 25(2): 243-250.
  60. Srinivasan, S., Gaur, P.M., Chaturvedi, S.K. and Rao, B.V. (2006). Allelic Relationship of genes controlling number of flowers per axis in chickpea,Euphytica,3:33.
  61. Stephens, A. and Lombardi, M. (2014).Genetic Marker Discovery, Intraspecific Linkage Map Construction and Quantitative Trait Locus Analysis of Ascochyta Blight Resistance in Chickpea (CicerArietinum L.),Molecular Breeding,2:297-313.
  62. Upadhyaya, H.D. and Dwivedi, S. L. (2008). Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicerarietinum L.),BMC Plant Biol.,8:106.
  63. Varshney, R. and Thudi, M. (2014).Genetic Dissection of Drought Tolerance in Chickpea (Cicer arietinum L.),Theor and App Genet., 2:445-462.
  64. Winter, P., Pfaff, T., Udupa, S.M., Huttel, B., Sharma, P.C., Sahi, S., Arreguin-Espinoza, R., Weigand, F., Muehlbauer, F.J. and Kahl, G. (1999). Characterization and mapping of sequence tagged microsatellite sites in chickpea (CicerarietinumL.) genome, Mol.Gen.Genet.,262: 90–101.

Global Footprints