Determination of Cry1Ac copy number in transgenic pigeonpea plants using quantitative real time PCR

DOI: 10.18805/lr.v0iOF.11300    | Article Id: LR-3675 | Page : 643-648
Citation :- Determination of Cry1Ac copy number in transgenic pigeonpeaplants using quantitative real time PCR .Legume Research.2017.(40):643-648

Meenakshi Jain, Surender Khatodia, Pushpa Kharb, Parveen Batra and Vijay K. Chowdhury

Address :

Department of Molecular Biology and Biotechnology, CCS Haryana Agricultural University, Hisar- 125 004, India.

Submitted Date : 30-12-2015
Accepted Date : 23-04-2016


Copy number of Cry1Ac in transgenic pigeonpea plants was determined by quantitative real time PCR using Syber Green as fluorescence indicator. Gene specific primers designed to amplify relatively long amplicons (400 – 600 bp), for Cry1Ac was used to increase specificity and sensitivity of Real time PCR. Estimated copy number in transgenic lines using real-time quantitative PCR and southern hybridization was correlated and found to be same i.e. single copy number. This study shows effectivness of real-time PCR method for estimating the transgene copy number in transgenic pigeonpea plants by a simple, accurate and cost effective manner.


Copy number Cry1Ac Pigeonpea transformation Real-time PCR Syber green.


  1. Ahmad, A., Maqbool., S.B., Hashsham, S.A. and Sticklen, M.B. (2005). Determination of copy number in transgenic basmati 370 rice (oryza sativa L.) plants using real time PCR and its comparision with southern blot. J Biol Sci. 5: 283-288
  2. Bubner, B. and Baldwin, I.T. (2004). Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep. 23: 263-271
  3. Callaway, A.S., Abranches, J., Scroggsb, G.C. and Thompson, A. (2002). High throughput transgene copy number estimation by competitive PCR. Plant Mol Bio Rep. 20: 265-277
  4. Chakraborti, D., Sarkar, A., Gupta, S. and Das, S. (2006). Small and large scale genomic DNA isolation protocol for chickpea (Cicer arietinum L.) suitable for molecular marker and transgenic analyses. J Biotechnol. 5: 585-589
  5. Flavell, R.B. (1994). Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci USA. 91: 3490-3496
  6. Higuchi, R., Dollinger, D., Walsh, P.S. and Griffith, R. (1992). Simultaneous amplification and detection of specific DNA sequences. Biotech. 10: 413-417
  7. Ingham, D.J., Beer, S., Money, S. and Hansen, G. (2001). Quantitative real-time PC R assay for determining transgene copy number in transformed plants. Biotech. 31: 136-140
  8. Iyer, L.M., Kumpatla, S.P., Chandrasekharan, M.B. and Hall, T.C. (2000). Transgene silencing in monocots. Plant Mol Biol. 43: 323-346
  9. Kooter, J.M., Matzke, T.A. and Meyer, P. (1999). Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci. 4: 340-347
  10. Lemaux, P.G. (2008). Genetically engineered plants and foods: A scientist’s analysis of issue. Annu Rev Plant Biol. 59: 771-812
  11. Lovatt, A. (2002). Applications of quantitative PCR in the biosafety and genetic stability assessment of biotechnology products. J Biotechnol. 82:279-300
  12. Mason, G., Provero, P., Vaira, A.M. and Accotto, G.P. (2002). Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol 2: 20
  13. Ponchel, F., Toomes, C., Bransfield, K., Leong, F.T. and Douglas, S.H. (2003). Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol. 3: 18-18
  14. Sambrook, J. and Russell, D.W. (2001). Molecular Cloning: A Laboratory Manual: 3rd Ed. Cold Spring Harbor Laboratory Press, NY
  15. Song, P., Cai, C.Q., Skokut, M., Kosegi, B.D. and Petolino, J.F. (2002). Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHIS KERS™ derived transgenic maize. Plant Cell Rep. 20: 948-954
  16. Tang, W., Newton, R.J. and Weidner, D.A. (2007). Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot. 58:545-554
  17. Vaucheret, H., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.B., Mourrain, P., Palauqui, J.C. and Vernhetters, S. (1998). Transgene-induced gene silencing in plants. Plant J. 16: 651-659
  18. Weng, H., Pan, A., Yang, L., Zhang, C., Liu, Z. and Zhang, D. (2004). Estimating Number of Transgene Copies in Transgenic Rapeseed by Real-Time PCR Assay With HMG I/Y as an Endogenous Reference Gene. Plant Mol Cell Rep. 22: 289-300
  19. Witter, C., Herrmann, M., Moss, A. and Asmussen, R. (1997). Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques. 22: 134-138
  20. Yang, L., Jiayu, D., Chengmei, Z., Junwei, J., Haibo, W., Wenzuan, L. and Dabing, Z. (2005). Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep. 23: 759-763
  21. Yi, C.X., Zhang, J., Chan, K.M., Liu, X.K. and Hong, Y. (2008). Quantitative real-time PCR assay to detect transgene copy number in cotton (Gossypium hirsutum). Anal Biochem. 375: 150-152
  22. Yuan, J.S., Burris, J., Stewart, N.R., Mentewab, A. and Stewart, C.N. (2007). Statistical tools for transgene copy number estimation based on real-time PCR. BMC Bioinformatics. 8(Suppl 7):S6

Global Footprints