Genetic improvement of two cultivars of Vicia faba L. using gamma irradiation and ethyl methanesulphonate mutagenesis

DOI: 10.18805/lr.v0iOF.9614    | Article Id: LR-3642 | Page : 338-344
Citation :- Genetic improvement of two cultivars of Vicia faba L. using gammairradiation and ethyl methanesulphonate mutagenesis .Legume Research-An International Journal.2017.(40):338-344

Shahnawaz Khursheed* and Samiullah Khan

shahnawazkhursheed95@gmail.com
Address :

Mulation Breeding Lab. Department of Botany, Aligarh Muslim University, Aligarh-202 002, India.

Submitted Date : 27-10-2015
Accepted Date : 29-02-2016

Abstract

The present experiment was conducted to induce genetic variation using gamma irradiation and ethyl methanesulphonate mutagenesis and isolate and analyze the desirable mutant lines of Vicia faba L. var. Vikrant and PRT-12 in the M3 generation. The seeds of the mutant lines isolated from 3rd generation plants were analyzed for different parameters including total protein content, protein profiles and mineral content using Lowry method, Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and atomic absorption spectrophotometer, respectively. SDS-PAGE profile of mutants from variety Vikrant showed more polymorphism and expression of proteins than mutants isolated from variety PRT-12. Mutant seeds showed significantly higher protein content (0.18 to 1.29%) and mineral content (0.21 to 2.98 mg.g-1) compared to the controls. The mutants selected from variety Vikrant showed more increase in protein and mineral contents than the mutants selected from PRT-12. The selected mutant lines may serve as a valuable genetic material to breed for the improvement of protein and mineral contents in faba bean and other valuable crop plants. 

Keywords

Atomic absorption spectrophotometer Ethyl methanesulphonate Gamma rays Induced mutation SDS-PAGE Vicia faba.

References

  1. Abdel-Hady, M.S., E.M. Okasha, S.S.A. Soliman. and M. Talaat. (2008). Effect of Gamma Radiation and Gibberellic Acid on Germination and Alkaloid Production in Atropa Belladonna L. Aust. J. basic appl. sci., 2: 401-405.
  2. Alikamanoglu, S., O. Yaycili. and A. Sen. (2011). Effect of gamma radiation on growth factors, biochemical parameters and accumulation of trace elements in soybean plants (Glycine max L. Merrill). Biol. Trace. Elem. Res., 141: 283–293.
  3. Alsohaimy, S.A., M.Z. Sitohy. and R.A. El-Masry. (2007). Isolation and partial characterization of chickpea, lupine and lentil seed proteins. World J. Agric. Sci. 3: 123-129.
  4. Arulbalachandran, D. and L. Mullainathan. (2009). Changes on protein and methionine content of blackgram (Vigna mungo (L.) Hepper) induced by gamma rays and EMS. American-Eurasian J. Sci. Res., 4: 68-72.
  5. Deepalakshmi, A.J. and C.R. Anandakumar. (2004). Creation of genetic variatiability for different polygenic traits in black gram (Vigna mungoL. Hepper) through induced mutagenesis. Legume Res., 27: 188-192.
  6. Delannay, X., D.M. Rodgers. and R.G. Palmer. (1983). Relative genetic contribution among ancestral lines to North America soybean cultivars. Crop Sci., 23: 944-949.
  7. Gregoria, G. B. (2002). Progress in breeding for trace minerals in staple crops. The J. Nutrition., 132: 500S-502S.
  8. Gupta, P. K., (2004). Plant analysis. In: Soil, Plant, Water and Fertilizer Analysis. 252-292. Agrobios, Jodhpur, India.
  9. Hameed, A., T.M. Shah, B.M. Atta, N. Iqbal, M. A. Haq. and H. Ali. (2009). Comparative seed storage protein profiling of Kabuli chickpea genotypes. Pak. J. Bot., 41: 703-710.
  10. Hong, D.D., H.M. Hien. and P.N. Son. (2007). Effect of irradiation on the protein profile, protein content, and quality of agar from Gracilaria asiatica Zhang et Xia (Rhodophyta). J. Appl. Phycol., 19: 809–815.
  11. Khadke, S.G. and V.S. Kothekar. (2011). Genetic improvement of moth bean (Vigna acconitifolia (Jacq.) Marechal) through mutation breeding. In: [Samiullah Khan and M. Imran Kozgar (eds.)], Breeding of Pulse Crops, 34-54. Kalyani Publishers, Ludhiana, India.
  12. Khursheed, S. and Khan, S. (2014). Mutagenic effects of methyl methanesulphonate on the growth and yield characteristics in Lentil (Lens culinaris Medik.) var. DPL-15. Scholars Academic J Biosciences, 2: 943-947.
  13. Khursheed, S., S. Fatima. and S. Khan. (2015). Differential genotypic response of two varieties of Hordeum vulgare L. in response to hydrazine hydrate alone and in combination with dimethyl sulfoxide. J. Phytol, 7: 19-25.
  14. Khursheed, S. and S. Khan. (2015). Cytology of Morphological Mutants of Vicia faba L. var. vikrant. Annu. res. rev. biol. 5: 366-371.
  15. Khursheed, S., Z. Akhtar. and S. Khan. (2014). Studies on the Effects of Treatments of Methyl Methanesulphonate and Sodium Azide on Induction of Variability in Hordeum vulgare L. Scholars Academic J Biosciences. 2: 948-952.
  16. Kozgar, M.I., S. Khan. M.R. Wani. (2012). Variability and correlation studies for total iron and manganese contents of Chickpea (Cicer arietinum L.) high yielding mutants. Am. J. Food Technol., 7: 437-444.
  17. Lowry, O.H., N.J. Rosebrough, A.L. Farr. and R.J. Randall. (1951). Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275.
  18. Matus I.A. and P.M. Hayes. (2002). Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome, 45: 1095-1106.
  19. Misra, R.C., B.D. Mohapatra. and B.S. Panda. (2001). High yielding mutants of blackgram variety PH-25. Mutat Breed Newslett., 45: 39.
  20. Nakagawa, H., T. Annai, A. Okabe, K. Takahashi, M. Hajika. and Y. Takagi. (2011). Mutation breeding of soybean in Japan. In: Samiullah Khan ansd M. Imran Kozgar (eds.), Breeding of Pulse Crops, 55-84. Kalyani Publishers, Ludhiana, India.
  21. Osanyinpeju, A.O. and P.G.C. Odeigah. (1998). Variation in seed protein from mutagen treated cultivars and selected line of Vigna unguiculata L. Walp. Plant Breed., 117: 361-365.
  22. Rehman, M.U., B.A. Siddiqui, S. Khan. and Mehraj-ud-Din. (2001). Hydrazine hydrate induced dwarf bold seeded mutant in black gram cultivar ‘PU-19’. Mutation Breed. Newslet., 45: 24-25.
  23. Rengel, Z., G.D. Batten. and D.E. Crowley. (1999). Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Res., 60: 27-40.
  24. Sadasivam, S. and A. Manickam. (2008). Biochemical methods (Third edition), New Age International (P) Limited, New Delhi 54-61.
  25. Santalla, M., J.M. Amurrio. and A.M. De Ron. (2001). Food and feed potential breeding value of green, dry and vegetable pea germplasm. Can. J. Plant Sci., 81: 601-610.
  26. Singh, K.B., G. Begiga. and R.S. Malhotra. (1990). Association of some characters with seed yield in chickpea collection. Euphytica., 49: 83-88.
  27. Singh, M.P. (2010). Spread of humger. Frontline., 27: 12-23.
  28. Singh, S. and A.K. Verma, (2015). A review on efforts of induced mutagenesis for qualitative and quantitative improvement of oilseed brassicas. J Pharmacogn Phytochem, 4: 298-302.
  29. Stegemann, H. and A.A. Shah, (1990). Biochemical approaches in identifying mutants and duplicates in germplasm collections. Mutation Breed. Newslet., 35: 16.
  30. USDA National Nutrient Database for Standard Reference Release 27
  31. Wani, A.A. and M. Anis. (2001). Gamma rays induced bold seeded high yielding mutant in chickpea. Mutat Breed Newslett., 45: 20-21.
  32. Wang, T.L., C. Domoney, C.L. Hedley, R. Casey, and M.A. Grusak. (2003). Can we improve the nutritional quality of legume seeds? Plant Physiol., 131: 886-891.
  33. Wi., S.G., B.Y. Chung, J.S. Kim, J.H. Kim, M.H. Baek, J.W. Lee, and Y.S. Kim, (2007). Effects of gamma irradiation on morphological changes and biological responses in plants. Micron., 38: 553-564.

Global Footprints