Estimation of genetic parameters and combining  ability analysis in blackgram [Vigna mungo (L.) Hepper] 

DOI: 10.18805/lr.v0iOF.9598    | Article Id: LR-3608 | Page : 401-408
Citation :- Estimation of genetic parameters and combining ability analysisin blackgram [Vigna mungo (L.) Hepper] .Legume Research-An International Journal.2017.(40):401-408

G. Thamodharan*, A. Ramalingam  and  S. Geetha

srig852@gmail.com
Address :

Agricultural College and Research Institute, Madurai – 625 104, India.

Submitted Date : 12-09-2015
Accepted Date : 23-12-2015

Abstract

An experiment was carried out in blackgram using line x tester mating design to estimate the gca effect of parents (six lines and five testers) and sca effect of 30 hybrids for yield and its traits.  Estimates of gca and sca variances, degree of dominance, predictability ratio and narrow sense heritability revealed that only three trais viz., pods per plant, seeds per pod and single plant yield were controlled by additive gene action and hence showed high narrow sense heritability. Magnitude of non-additive gene action was higher than the additive gene action for traits like plant height, days to 50% flowering, cluster per plant, 100 seed weight, days to maturity, branches per plant and pod length. Three parents ‘MDU1, ADT3 and LBG-752 were the best combiners and three crosses ‘MDU1 x VBN (Bg) 6, LBG-752 x VBN (Bg) 6, LBG-752 x Mash-114 showed high per se performance and significant positive sca for yield. For exploiting both additive and non-additive gene action recurrent selection to be followed to improve yield in blackgram.

Keywords

Additive Narrow sense heritability Non-additive Predictability ratio sca and gca effect.

References

  1. Baker, R. J. (1978). Issues in diallel analysis. Crop Sci., 18:533-536.
  2. Baradhan, G. and Thangavel, P. (2011). Gene action and combining ability for yield and other quantitative traits in blackgram. Plant Archives, 11: 267-270.
  3. Bhagirath Ram., S. B. S. Tikka and R. K. Kakani. 2010. Genetic architecture of yield and its component traits in blackgram (Vigna mungo) grown under different environments. Indian Journal of Agricultural Sciences 80: 312–5.
  4. Bhagirath Ram., Tikka, S.B.S. and Kakani, R.K. (2010). Genetic architecture of yield and its component traits in blackgram (Vigna mungo) grown under different environments. Indian J. Agric. Sci., 80: 312–5.
  5. Chakraborty, S. and Borua, P.K. (1998). Inheritance of seed yield and its components in black gram (Vigna mungo L. Hepper). Indian J. Genet and Pl. Breed., 58:225-227.
  6. Chakraborty, S., Borah, H. K., Borah B. K., Pathak, D, Baruah, B. K., Kalita, H. and Barman, B. (2010). Genetic parameters and combining ability effects of parents for seed yield and other quantitative traits in black gram [Vigna mungo (L.) Hepper], Notulae Scientia Biologicae, 2: 121-126.
  7. Cheralu, C. A., Satyanarayana, N., Kulkarni, K., Jagdishwar, M. and Reddy, S.S. (1999). Combining ability analysis for resistance to preharvest sprouting in mungbean (Vigna radiata L. Wilczek). Indian J. Genet. and Pl. Bree., 59:465-472.
  8. Dana, I. and Das Gupta, T. (2001).Combining ability in blackgram. Indian J. Genet., 61: 170-171. 
  9. Das Gupta, T. and Das, P.K. (1987). Genetics of yield in black gram. Indian J. Genet and Pl. Bree., 47:265-270.
  10. Das S. and Das Gupta T. (1999). Combining ability in sesame. Indian J. Genet., 59: 69-75.
  11. Geleta, F. and Labuschagne, T. (2006). Combining ability and heritability for vitamin C and total soluble solids in pepper (Capsicum annuum L.). J. Sci. Food Agric., 86: 1317-1320.
  12. Girish, T.K., Pratape, V.M. and Prasada Rao, U.J.S. (2012). Nutrient distribution, phenolic acid composition, antioxidant and alpha-glucosidase inhibitory potentials of black gram (Vigna mungo L. Hepper) and its milled by-products. Food Res. Int., 46: 370-377.
  13. Govindaraj P. and Subramanian M. (2001). Combining ability analysis in blackgram, Legume Res, 15: 59-64.
  14. Kachave G.A., Parde N.S., Zate D.K. and Harer P.N. (2015) .Analysis of combining ability in Blackgram (Vigna mungo (L) Hepper). International J. Advan. Res., 3: 1139-1146.
  15. Kempthorne, O. (1957). An Introduction to Genetical Statistics. John Wiley and Sons, Inc., New York.
  16. Manivannan N. (2002). Genetic diversity in cross derivatives of greengram (Vigna radiate (L.) Wilczek), Legume Res., 25:50-52.
  17. Panigrahi, K.K., Mohanty, A., Pradhan, J., B. Baisakh, B., M.Kar, M. (2015). Analysis of Combining Ability and Genetic Parameters for Yield and Other Quantitative Traits in BlackGram [Vigna mungo(L.) Hepper]. Legume Geno. and Genet., 6: 1-11.
  18. Rojas, B. A. and Sprague, G. F. (1952). A comparison of variance components in corn yield traits, III. General and specific combining ability and their interactions with locations and years. Agronomy J., 44:462-466.
  19. Singh Mohar. (2008). Genetic analysis for growth related traits in blackgram under two cropping systems. Indian Jour. Agri. Sci., 78: 643-645.
  20. Singh, K. B. and Singh, K.K. (1971). Heterosis and combining ability in black gram. Indian. J. Genet and Pl. Bree., 31:491-498.
  21. Singh, R.K. and Chaudhary, B.D. (1979). Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishing, New Delhi, pp.209. 
  22. Soren, K.R., P.G. Patil., Alok Das., Abhishek Bohra., Subhojit Datta., S.K. Chaturvedi., N. Nadarajan. (2012). Advances in Pulses Genomic Research, Indian Institute of Pulses Research, Kanpur, pp- 25.
  23. Sprague, G. F. and Tatum, L. A. (1942). General verses specific combining ability in single crosses of corn. J. Amer. Soc. Agron., 34: 923-932.
  24. Vijay Kumar, G., Vanaja, M., Raghu Ram Reddy P., Salini, K., Babu Abraham. and Jyothi Lakshmi, N. (2014). Studies on Combining Ability and Genetic Advance in Blackgram (Vigna mungo L. Hepper) Under Rainfed Condition. Journal. Agric. and Allied Sci., 3: 14-24.

Global Footprints