Impact of PGRS and nutrients pre-soaking on seed germination and seedling characters of mung bean under salt stress

DOI: 10.18805/lr.v0iOF.11301    | Article Id: LR-3512 | Page : 125-131
Citation :- Impact of PGRS and nutrients pre-soaking on seed germinationand seedling characters of mung bean under salt stress .Legume Research.2017.(40):125-131

R. Sivakumar* and G. K. Nandhitha

Address :

Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore-641 003, India.

Submitted Date : 29-04-2015
Accepted Date : 26-09-2015


An experiment was conducted to study the impact of seed soaking with plant growth regulators (gibberellic acid, indole acetic acid, kinetin, salicylic acid and ascorbic acid) and nutrients (potassium chloride and calcium chloride) on mung bean (Vigna radiata L.) variety Co (Gg) 8 under salt stress condition. The seed and seedling growth under normal and saline (150 mM NaCl) conditions were studied to determine their usefulness in increasing relative salt tolerance by using PGRs and nutrients. Under salt stress, seedling characters were significantly affected compared to normal condition. Seed treatments with gibberellic acid (1mM), salicylic acid (2 mM), ascorbic acid (50 ppm) and kinetin (50 ppm) drastically increased the morphological and biochemical parameters of seedling under saline conditions. All pre-soaking seed treatments increased the germination percentage, shoot and root length, vigour index and stress tolerance index over control. Among the treatments, gibberellic acid, salicylic acid and ascorbic acid showed their supremacy compared to other treatments. Na+ / K+ ratio was decreased by gibberellic acid, CaCl2 (0.5%) and KCl (1%) treatments. It is concluded that treatments with hormones and nutrients have reduced the severity of the salinity effect and the amelioration was observed in all the treatments compare to control. Gibberellic acid and salicylic acid and ascorbic acid showed best results on seedling growth and biochemical characters whereas seed soaking with gibberellic acid, CaCl2 (0.5%) and KCl (1%) were showed its effect on decreased Na+ / K+ ratio under present experimental material and saline conditions.


Catalase Mung bean Na+/K+ Nutrients PGRs Salinity STI Vigour Index.


  1. Abdul-Baki, A. and Anderson, J. D. (1973). Vigor determination in Soybean seed by multiple criteria. Crop Sci., 13: 630-633.
  2. Afzal, I., Basra, S. M. A., Ahmad, N. and Farooq, M. (2005). Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestivum L.). Caderno de Pesquisa Ser. Bio. Santa Cruz do Sul., 17: 95-109.
  3. Afzal, I., Basra, S. M. A., Shahid, M. and Saleem, M. (2008). Priming enhances germination of spring maize (Zea mays L.) under cool conditions. Seed Sci Technol., 36:497-503
  4. Ahmet, K., Uzunlu, M. and Demirkiran, A. R. (2007). Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiol. Plant., 29:503–508
  5. Ashraf, M., Athar, H. R., Harris, P. J. C. and Kwon, T. R. (2008). Some prospective strategies for improving crop salt tolerance. Adv. Agron., 97: 45–110.
  6. Azooz, M. M. (2009). Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int. J. Agric. Biol., 11: 343-350.
  7. Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of proline for water stress studies. Plant Soil, 39: 205-207. 
  8. Beltagi, M. S. (2008). Exogenous ascorbic acid (vitamin C) induced anabolic changes for salt tolerance in chick pea. Afr. J. Plant Sci., 2: 118-123.
  9. Behairy, R. T., El-Danasoury, M. and Craker, L. (2012). Impact of ascorbic acid on seed germination, seedling growth, and enzyme activity of salt stressed fenugreek. Journal of Medicinally Active Plants, 1: 106-113
  10. Dhopte, A. M. and Livera, M. M. (1989). Useful Techniques for Plant Scientists; Forum for Plant Physiologists, Murly Printers, Shivnagar, Akola.
  11. Dutta, P. and Bera, A. K. (2008). Screening of mung bean genotypes for drought tolerance. Legume Res., 31: 145 148
  12. El-Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Reg., 45:215-224
  13. Essa, T.A. (2002). Effect of salinity stress on growth and nutrient composition of three soybean [Glycine max (L.) Merrill] cultivars. J. Agron. Crop Sci., 88: 86-93.
  14. Fariduddin, Q., Hayat, S. and Ahmad, A. (2003). Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica, 41: 281-284.
  15. Farooq, M., Basra, S. M. A. and Wahid, A. (2006). Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield. Plant Growth Regul., 49:285–294.
  16. Garcia, G. D., Ferreira, P. A., Miranda, G. V., Neves, J. V., Moraes, W. B. and Santos, B. (2007). Leaf contents of cationic macronutrients and their relationships with sodium in maize plants under saline stress. IDESIA, 25: 93-106. 
  17. Gopalachari, N. C. (1963). Changes in the activities of certain oxidizing enzymes during germination and seedling development of Phaseolus mungo and Sorghum. Indian. J. Exp. Biol., 1: 98-100.
  18. Grattan, S.R. and Grieve, C. M. (1999). Mineral nutrient acqui-sition and response by plants grown in saline environ-    ments. In: Pessarakli M. (ed.): Handbook of Plant and Crop Stress. Marcel Dekker, New York: 203–229
  19. Gunes, A., Inal, A., Alpaslam, M., Erslan, F., Bagsi, E. G. and Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maiz (Zea mays L.) grown under salinity. J. Plant physiol., 164: 728-736
  20. Hajer, A. S., Malibari, A. A., Al-Zahrani, H. S. and Almaghrabi, O. A. (2006). Responses of three tomato cultivars to sea water salinity 1. Effect of salinity on the seedling growth. African J. Biotec., 5: 855-861.
  21. Halmer, P. (2004). Methods to improve seed performance in the field. In: Handbook of seed physiology; Application to agriculture. (Eds.): R.L. Benech-Arnold and R.A. Sanchez. The Haworth Press. New York: 125-165.
  22. Hameed, A., Afzal, I. and Iqbal, N. (2010). Seed priming and salinity induced variations in wheat (Triticum aestivum L.) leaf protein profile. Seed Sci. Technol., 38:236–241.
  23. Hare, P. D. and Cress, W. A. (1997). Metabolic implications of stress induced proline accumulation in plants. J. Plant Growth Regul., 21: 79-102.
  24. Hosseini, G. and Thengane, R. J. (2007). Salinity tolerance in cotton (Gossypium hirsutum L.) genotypes. Int. J. Bot., 3: 48-55.
  25. Iqbal, M. and Shraf, M. (2013). Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environmental and Experimental Botany, 86: 76-85
  26. Jamil, M., Rehman, S., Lee, K. J., Kim, J. M., Kim, H. S. and Rha, E.S. (2007). Salinity reduced growth PSII photochemistry and chlorophyll content in radish. Sci. Agric., (Piracicaba, Braz.,) 64: 111-118.
  27. Kabar, K. (1987). Alleviation of salinity stress on germination of barely seeds by plant growth regulators. Turk. J. Biol., 11: 108-117.
  28. Kabar, K. (1990). Comparison of kinetin and gibberellic acid effects on seed germination under saline condition. Phyton (Horn, Austria), 30: 291-298.
  29. Kathiresan, K., Kalyani, V. and Gnanarethium, J. L. (1984). Effect of seed treatments on field emergence, early growth and some physiological processes of sunflower (Helianthus annus L.). Field Crops Res., 9: 255-259.
  30. Kishore, R. B. K., Hong, Z., Miao, G. H., Hu, C. A. A. and Verma, D. P. (1995). Over-expression of D-pyrroline-5-    carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants. Plant Physiol., 108:1387-1394
  31. Mishra, N. and Gupta., A. K. (2005). Effect of salt stress on proline metabolism in two high yielding genotype of green gram. Plant Sci., 169: 331-339.
  32. Mishra, N. and Saxena, P. (2009). Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci., 175: 567-569.
  33. Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci., 9: 490–498.
  34. Miyake, C. and Asada, K. (1992). Thylakoid bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product, monodehydro ascorbate radicals in the thylakoids. Plant Cell Physiol., 33: 541-553.
  35. Mohammadi, G. R. (2009). The influence of NaCl priming on seed germination and seedling growth of Canola under salinity condition. American-Eurasian J. Agric. and Environ. Sci., 5: 696-700. 
  36. Mostafa, G. G. and Abou Al-Hamd, M. F. (2011). Effect of gibberellic acid and indole-3 acetic acid on improving growth and accumulation of phytochemical composition in Balanites aegyptica plants. Am. J. Plant physiol., 6: 36-43.
  37. Patel, I. and Saxena, O. P. (1994). Screening of PGRs for seed treatment in green gram and black gram. Indian J. Plant Physiol., 37: 206-208.
  38. Pathak, K. (2000). Agro forestry: A tool for arresting land degradation. Indian Farming, 49: 15-19. 
  39. Raza, S. H., Athar, H. R., Ashraf, M. and Hameed, A. (2007). Glycine betaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ. Exp. Bot., 3: 368-376
  40. Sadeghi, H., Khazaei, F., Yari, L. and Sheidaei, S. (2011). Effect of seed osmopriming on seed germination behavior and vigor of soybean (Glycine max L.). Arpn. J. Agric. Biol. Sci., 6: 39-43.
  41. Sekhon, N. K. and Singh, G. (1994). Effect of growth regulators and date of sowing on grain development in wheat. Indian J. Plant Physiol., 37: 1-4.
  42. Senaratna, T. D., Tuochell, T., Bunn, K. and Dixon, D. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul., 30: 157-161.
  43. Shabani, E., Tabatabaei, S. J., Bolandnazar, S. and Ghasemi, K. (2012). Vegetative growth and nutrient uptake of salinity stressed Cherry tomato in different calcium and potassium level. Int. Res. J. Appl. Basic Sci., 3: 845-1853. 
  44. Sharma, P., Jha, A. B., Dubey, R.S. and Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions J. Bot., 1–26
  45. Singh, B. and Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul., 39: 137-141.
  46. Sivritepe, N., Sivritepe, H. O. and Eris, A. (2003). The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Sci. Hort., 97: 229–237.
  47. Smirnoff, N. (2005). Ascorbate, tocopherol and carotenoids: metabo-lism, pathway engineering and functions. In: Smirnoff N, ed. Antioxidants and reactive oxygen species in plants. Oxford: Blackwell Publishing, 53–86.
  48. Sudhir, P. and Murthy, S. D. S. (2004). Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42: 481- 486.
  49. Szabolcs, I. (1994). Soils and salinisation. In Hand book of Plant and Crop Stress (ed. M. Pessarakali), pp. 3–11. Marcel Dekker, New York
  50. Szepsi, A., Csiszar, J., Bajkan, S. Z., Gemes, K., Horvath, F., Erdei, L., Deer, A., Simon, L. M. and Tari, A. (2005). Role of salicylic acid pre-treatment on the acclimatization of tomato plant to salt and osmotic stress. Acta Biol Szagediensis 49:123-125
  51. Tari, I., Csiszar, J., Szalai, G., Horvath, F., Pecsvaradi, A., Kiss, G., Szepesi, A., Szabo, M. and Erdei, L. (2002). Acclimation of tomato plants to salinity stress after a salicylic acid pretreatment. Acta Biol. Szegediensis, 46: 55-56.
  52. Weibe, H. J. and Tiessen, H. (1979). Effects of different seed treatments on embryo growth and emergence of carrot seeds. Gartenbauwissenschaft. 44: 280-286. 
  53. Yildirim, E., Turan, M. and Guveni, I. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll and mineral content of cucumber (Cucumis sativus L.) grown under salt stress. Journal of Plant Nutrition, 31: 593-612.
  54. Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Sci., 6: 66-71.

Global Footprints