Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 39 issue 6 (december 2016) : 851-859

Genetic diversity analysis among selected short duration chickpea cultivars and breeding lines based on STMS markers

Syeda Asma Koinain*1, V.S. Hegde2, C. Bharadwaj3
1<p>Department of Genetics and Plant breeding,&nbsp;Agriculture College, Dharwad-580 005, India.</p>
Cite article:- Koinain*1 Asma Syeda, Hegde2 V.S., Bharadwaj3 C. (2016). Genetic diversity analysis among selected short duration chickpeacultivars and breeding lines based on STMS markers . Legume Research. 39(6): 851-859. doi: 10.18805/lr.v0iOF.11299.

Genetic diversity among 30 chickpea genotypes was evaluated using simple sequence repeat (SSR) molecular markers. The studies using Sequence Tagged Microsatellite Site (STMS) markers markers revealed that among the primers used across the genotypes produced a total of 35 alleles representing 21 SSR loci with frequencies ranging from one to two (mean 1.66) alleles per locus. Polymorphic Information Content (PIC) ranged from 0.098 to 0.500 (CAM0443, CAM0446). These primers might be an effective and useful tool to determine the genetic differences among chickpea genotypes and to study the phylogenetic relationships. Polymorphic percentage was 96.42. Hierarchical neighbour-joining UPGMA cluster analysis based on simple matching similarity matrix resolved the 30 genotypes into seven clusters. Based on STMS markers highest similarity index 0.850 was observed between BGD 72 and Annigeri-1whereas BGD 9920 and ICC 92944 showed the lowest similarity index 0.214 between them. The STMS clustering pattern indicated the presence of wide genetic diversity between the genotypes. Overall, the study ascertained that SSRs provide powerful marker tools in revealing genetic diversity and relationships in chickpeas, thereby proving useful for selection of parents in breeding programs and also for DNA fingerprinting for identification of cultivars.

  1. Bharadwaj, C., Chauhan, S.K., Rajguru, G., Srivastava, R. and Tara Satyavathi, C. (2010). Diversity analysis of chickpea (Cicer arietinum L.) cultivars using STMS markers. Indian J Agric Sci., 80: 947–51.

  2. Bharadwaj, C., Srivastava, R., Chauhan, S.K., Satyavathi, C.T., Kumar, J., Faruqui, A., Yadav, S., Rizvi, A.H. and Kumar, T. (2011). Molecular diversity and phylogeny in geographical collection of chickpea (Cicersp.) accessions. J. Genet. (Springer)90,e94–e100.< http://www.ias.ac.in/jgenet/Online Resources / 90/e94.pdf>. 

  3. Croser, J. S., Ahmad, F., Clarke, H. J. and Siddique, K. H. M. (2003). Utilization of wild Cicer in chickpea improvement – progress, constraints and prospects. Aust. J. Agri. Res., 54: 429–444.

  4. Chetan, K.C. and Dinisha, A. (2010). Interspecific detection of polymorphism using STMS in chickpea. Electronic J Plant Breed., 1: 484-488.

  5. Choumane, W., Winter, P., Weigand, F. and Kahl, G. (2000). Conservation and variability of sequence tagged microsatellite sites (STMSs) from chickpea (Cicer arietinum L.) within the genus Cicer. Theor Appl Genet., 101: 269–278.

  6. Choudhary, P., Khanna, S.M., Jain, P.K., Bharadwaj, C., Kumar, J., Lakhera, P.C. and Srinivasan, R. (2012). Genetic structure and diversity analysis of the primary gene pool of chickpea using SSR markers. Genet Mol Res., 11:891–    905.

  7. Domini, P., J.R. Law., R.M.D. Koebner., J.C. Reeves. and R.J. Cooke. (2000). Temporal trends in the diversity of UK wheat. Theor Appl Genet., 100: 912–917.

  8. Doyle, J.J. and Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull., 19:11–15.

  9. Flandez-Galvez, H., Ford, R., Pang, E.C.K. and Taylor, P.W.J. (2003). An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on the sequence microsatellite site and resistance gene analog markers. Theor Appl Genet.,106: 1447-1456.

  10. Goldstein, D.B. and Pollock, D.D. (1997). Launching microsatellites: a review of mutation processes and methods of phylogenetic inference. J Hered ., 88: 335-342

  11. Gupta, P. K. and Varshney, R. K. (2000). The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica ., 113:163-185

  12. Huttel, B., P. Winter., Wiesing, K., Choumane, W., Weigand, F. and Kahl, G. (1999). Sequence tagged microsatellite site markers for chickpea (Cicer arietinum L). Genome 42:210-117.

  13. Imtiaz, M., Materne, M., Hobson, K., van Ginkel, M. and Malhotra, R.S. (2008). Molecular genetic diversity and linked resistance to ascochyta blight in Australian chickpea breeding materials and their wild relatives. Aust. J. Agric. Res., 59:554–560

  14. Jaccard, P. (1908). Nouvelles rescerches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat., 44: 233-270. 

  15. Kumar, J. and Abbo, S. (2001). Genetics of flowering time in chickpea and its bearing on productivity in Semiarid environments. Adv. Agron., 72:107-138.

  16. Levinsen, G. and Gutman, G. A. (1987). Slipped-strand mispairing: a major mechanism for DNA evolution. Mol Biol Evol., 4:203-221.

  17. Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc.Natl. Acad. Sci. USA., 70: 3321-3323

  18. Powell,W., Morgante, M., Andre, C., Hanafey, M., Vogel, M.J., Tingey, S.V. and Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellites) markers for germplasm analysis. Mol Breed., 2: 225-235.

  19. Rohlf, F. J. (1998). NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 2.02. Exter Software, Setauket, NY

  20. Sangiri, C., Kaga, A., Tomooka, N., Vaughan, D. and Srinives, P. (2007). Genetic diversity of the mungbean (Vigna radiata, Leguminosae) gene pool on the basis of microsatellite analysis. Aust. J. Agri. Bot., 55: 837–847.

  21. Sefera, T., Abebie, B., Gaur, P.M., Assefa, K. and Varshney, R.K. (2011). Characterization and genetic diversity analysis of selected chickpea cultivars of nine countries using simple sequence repeat (SSR) markers. Crop Pasture Sci., 62:177–18.

  22. Singh, K.B. (1987). Chickpea breeding In: Saxena MC, Singh KB (eds) The Chickpea, CAB International Wallingford., 127–162.

  23. Sneath, P. and Sokal, R. (1973). Numerical Taxonomy. W.H. Freeman, San Francisco: 887

  24. Subbarao, G.V., Johansen, C., Slinkard, A.E., Nageshwara Rao, R.C., Saxena, N.P. and Chauhan, Y.S. (1995). Strategies for improving drought resistance in grain legumes. Cri Rev Plant Sci., 14:469-523

  25. Turner, N.C. (1986). Adaptations to water deficits: a changing perspective. Aust J Plant Physiol., 13: 175-190.

  26. Udupa, S.M., Robertson, L.D., Weigand, F., Baum, M. and Kahl, G. (1999). Allelic variation at (TAA)n microsatellite loci in a world collection of chickpea (Cicer arietinum L.) germplasm. Mol Gen Genet., 261: 354–363

  27. Upadhyaya, H.D., Dwivedi, S.L., Baum, M., Varshney, R.K., Udupa, S.M., Gowda, C.L., Hoisington, A. and Singh, S. (2008). Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol., 8:106-117.

  28. Winter, P., Pfaff, T., Udupa, S. M., Huettel, B., Sharma, P. C., Sahi, S., Arreguin, E. R., Weigand, F., Muehlbauer, F.J. and Kahl, G. (1999). Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol. Gen. Genet., 262:90–101.

  29. Winter, P., Benko –Iseppon, A.M., Hüttel, B., Ratnaparkh, M., Tullu, A., Sonnante, G., Pfaff, T. and Tekeoglu, M. (2000). A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum x C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor. Appl. Genet. 101:1155-1163.

Editorial Board

View all (0)