Associative effects of stylo and king grass silage different ratios on in vitro Rumen Fermentation 

DOI: 10.18805/LR-335    | Article Id: LR-335 | Page : 584-588
Citation :- Associative effects of stylo and king grass silage different ratios on in vitro Rumen Fermentation.Legume Research-An International Journal.2018.(41):584-588
Yage Zhang, Mao Li, Hanlin Zhou, Lin Hu, Wei Li, Tieshan Xu limaohn@163.com
Address : Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571 737, Hainan, China.
Submitted Date : 14-12-2016
Accepted Date : 18-04-2018

Abstract

The study was aimed to evaluate the associative effects of mixtures of stylosanthe (Stylosanthes guianensis) and king grass (Pennisetum purpureum × P. americanum cv. Reyan No. 4) silage at different ratios using in vitro gas production technique. Three stylosanthes (S. guianensis Sw. Reyan No.2, S2; S. guianensis Sw. Reyan No.20, S20; S. guianensis Sw. Reyan No.21, S21) were mixed with king grass silage (K) at different ratios (0:100, 10:90, 20:80, 40:60, 50:50, 100:0) and their associative effects were evaluated using in vitro gas technique. The results showed that under the controlled conditions, addition of the mixtures of stylosanthes and king grass silage could improve in vitro gas production (GP), in vitro dry matter digestibility (IVDMD) and microbial protein (MP) and promote the vitality of rumial microbes. In addition, most mixtures of stylosanthes and king grass silage showed positive associative effects and the mixtures at ratio of 20:80 had the best associative effect based on the synthetically associative effects index (SAEI).

Keywords

Stylosanthe King Grass Silage In Vitro Gas Production Associative Effects.

References

  1. Aderinboye, R. Y., Akinlolu, A. O. and Adeleke, M. A. (2016). In vitro gas production and dry matter degradation of four browse leaves using cattle, sheep and goat inocula. Slovak J. Anim. Sci. 1: 32-43.
  2. AOAC (1990). In: Horowitz, William (Ed.), Ofûcial Methods of Analysis, 15th ed. Association of oficial Analytical Chemists, Arlington, VA.
  3. Blümmel, M., Makkar, H. P. S. and Becker, K. (2011). In vitro gas production: a technique revisited. J. Anim. Physiol. Anim. Nutr. 77: 24-34.
  4. Broderick, G. A. and Craig, W. M. (1989). Metabolism of peptides and amino acids during in vitro protein degradation by mixed rumen organisms. J. Dairy Sci. 72: 2540-2548.
  5. Chen, L., Guo, G., Yuan, X., Zhang, J., Li, J. and Shao, T. (2015). Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of total mixed ration silage prepared with oat–common vetch intercrop on the Tibetan Plateau. J. Sci. Food & Agr. 303: 1100-1102.
  6. Cotta, M. A. and Rusell, J. R. (1982). Effect peptide and amino acids on efficiency of rumen bacterial synthesis in continuous culture. J. Dairy Sci. 65: 226-234.
  7. Dewhurst, R. J., Evans, R. T., Scollan, N. D., Moorby, J. M., Merry R. J. and Wilkins, R. J. (2003). Comparison of grass and legume silages for milk production. 2. In vivo and in sacco evaluations of rumen function. J. Dairy Sci. 86: 2612-2621.
  8. Dhiman, T. R. and Satter, L. D. (1997). Yield response of dairy cows fed different proportions of alfalfa silage and corn silage. J. Dairy Sci. 80: 2069-2082.
  9. Diaz, A., Avendano, M. and Escobar, A. (1993). Evaluation of Sapindus saponaria as a defaunating agent and its effects on different rumen digestion parameters. Livestock Research for Rural Development 5: 1-6.
  10. Forbes, E. B., Braman, W. W., Kriss, M. and Swift, R. W. (1931). The metabolizable energy and net energy values of corn meal when fed exclusively and in combination with alfalfa hay. J. Agr. Res. 43: 1015-1026.
  11. Kamalak, A., Canbolat O., Gurbuz Y. and Ozay O., (2005). Comparison of in vitro gas production technique with in situ nylon bag technique to estimate dry matter degradation. Czech J. Anim. Sci. 50: 60-67.
  12. Li, D. X., Gong, F. C. and Li, K. Y. (1997). High yield and quality of forage grass: the development and utilization of king grass. Pratacultural Sci. 14: 2. (In Chinese with English abstract)
  13. Li, M., Zi, X., Zhou, H., Hou, G. and Cai, Y. (2014a). Chemical composition and in vitro digestibility of Stylosanthes guianensis varieties. Grassland Sci. 60: 125-129.
  14. Li, M., Zi, X., Zhou, H., Hou, G. and Cai, Y. (2014b). Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitro gas production of king grass silage. Anim. Feed Sci. Tech. 197: 206-212.
  15. Li, Y. F., Hao, J. X., Ma, Y. Y., Cheng Y. F. and Zhu, W. Y. (2013). Nutritive value evaluation of different types of feeds by in vitro ruminal fermentation method. Chin. J. Anim. Nutr. 25: 2403-2413. (In Chinese with English abstract)
  16. Liu, G. D., Phaikaew, C. and Stür, W. W. (1997). Status of Stylosanthes development in other countries. II. Stylosanthes development and utilisation in China and south-east Asia. Trop. Grasslands 31: 460-466.
  17. Liu, J. X., Yao, J., Yan, B., Yu, J. Q. and Shi Z. Q. (2001). Effects of mulberry leaves to replace rapeseed meal on performance of sheep feeding on ammoniated rice straw diet. Small Ruminant Res. 39: 131-136.
  18. Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D. and Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agr. Sci. 93: 217-222.
  19. Merry, R. J., Lee, M. R. F., Davies, D. R., Dewhurst, R. J., Moorby, J. M., Scollan, N. D. and Theodorou, M. K. (2006). Effects of high-    sugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 1. In vitro and in vivo studies of nitro-gen utilization. J. Agr. Sci. 84: 3049-3060.
  20. Miles, J. W. and Grof, B. (1997). Recent advances in studies of anthracnose of Stylosanthes. III. Stylosanthes breeding approaches in South America. Trop. Grasslands 31: 430-434.
  21. Mould, F. L. and Mann, R. O. (1983). Associative effects of mixed feeds. I. Effects of type and level of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim. Feed Sci. Tech. 10: 15-30.
  22. Niderkorn, V., and Baumont, R. (2009). Associative effects between forages on feed intake and digestion in ruminants. Anim. 3: 951-960.
  23. Niderkorn, V., Baumont, R., Le Morvan, A. and Macheboeuf, D. (2011). Occurrence of associative effects between grasses and legumes in binary mixtures on in vitro rumen fermentation characteristics. J. Anim. Sci. 89: 1138-45.
  24. Nishino, N., Miyase, K., Ohshima, M. and Yokota, H. (1997). Effects of extraction and reconstitution of ryegrass juice on fermentation, digestion and in situdegradation of pressed cake silage. J. Sci. Food Agr. 75: 161-166.
  25. Ørskov, E. R. and Mcdonald, I. M. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agr. Sci. 92: 499-503.
  26. Phesatcha, K. and Wanapat, M. (2016). Improvement of nutritive value and in vitro ruminal fermentation of leucaena silage by molasses and urea supplementation. Asian-Australasian J. Anim. Sci. 29: 1136-1144.
  27. Russell, J. B., O’Connor, J. D., Fox, D. G., Van Soest, P. J. and Sniffen, C. J. (1992). A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 70: 3551-3561.
  28. Salinas-Chavira, J., Castillo-Martínez, O., Ramirez-Bribiesca, J. E. and Mellado, M. (2011). Effect of increasing levels of white mulberry leaves (Morus alba) on ruminal dry matter degradability in lambs. Trop. Anim. Heal. Pro. 43: 995-999.
  29. Satter, L. D. and Slyter, A. L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. Bri. J. Nutr. 32: 199-208.
  30. Sun, G. Q., Lv, Y. Y. and Zhang, J. J. (2014). A study on the associative effect of whole corn silage-peanut vine and Leymus chinensis by rumen fermentation in vitro. Acta Prataculturae Sinica 23: 224-231. (In Chinese with English abstract)
  31. Su, H. Y. (2002). Study on associative effects between mulberry leaves (morus alba) and oil-seed meals in ruminants. Hangzhou: Zhejiang University. (In Chinese with English abstract)
  32. Su, J. Z., Chaudhry, A. S., Osman, A., Shi, C. Q., Edwards, G. R., Dewhurst, R. J. and Cheng, L. (2015). Associative effects of ensiling mixtures of sweet sorghum and alfalfa on nutritive value, fermentation and methane characteristics. Anim. Feed Sci. Tech. 206: 29-38.
  33. Van Soest, P. J., Robertson, J. B. and Lewis, B. A. (1991). Methods for dietary ûber, neutral detergent ûber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597.
  34. Yu, T. F., Zhang, J. J. and Sun, G. Q. (2012). Associative effects of peanut vine and four kinds of roughages. Chin. J. Anim. Nutr. 24, 1246-1254. (In Chinese with English abstract)
  35. Zhao, G. Y. and Lebzien, P. (2000). Development of an in vitro incubation technique for the estimation of the utilizable crude protein (uCP) in feeds for cattle. Arch. Anim. Nutr. 53, 293-302.

Global Footprints