DOI: 10.5958/j.0976-0571.37.1.011    | Article Id: LR-3315 | Page : 72-78
Meenu Walia, Navneet Batra* and Sneh Goyal batranavneet@gmail.com
Address : Department of Microbiology, SBS-PGIMER, Dehradun- 248 001, India


Five major genera of   bacteria namely Pseudomonas, Bacillus, Klebsiella, Azotobacter, and Enterobacter has been isolated from the rhizosphere of leguminous plants. Screening of these bacterial isolates revealed different plant growth promoting properties. Phosphate solubilizers (44.82%), Siderophore producers (54.02%), IAA producers (51.72%) and Ammonia producers (82.75%) were obtained among rhizopheric bacteria isolated. Wide variation in the anti fungal properties with large number of bacteria active against Alternaria sp. and Rhizoctonia sp. Possibility of ten bacterial strains as PGPRs  was explored by carrying out controlled study of exposure of seeds of  Phaseolus vulgaris with culture of bacterial strains. Increase in dry mass of root and shoot were observed.


IAA Legume PGPR Phosphate solubilization Rhizosphere Siderophores.


  1. Ahemad, M. and Khan, M.S. (2011). Effects of insecticides on plant growth- promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. strain PS19. Pestic. Biochem. Physiol. 100: 51–56.
  2. Ahemad, M. and Khan, M.S. (2012). Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J. Saudi Soc. Agric. Sci. 11: 63–71.
  3. Ahemad, M. and Kibret, M. (2013). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Uni. Sci. http://dx.doi.org/10.1016/j.jksus.2013.05.001
  4. Ahmad, F. and Ahmad, I. and Khan, M.S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173–181.
  5. Arruda, L. and Beneduzi, A., Martins, A., Lisboa, B., Lopes, C., Bertolo, F., Passaglia, A. M. Vargas and L. K. (2013). Screening of rhizobacteria isolated from maize (Zea mays L) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Appl. Soil. Eco. 63: 15-22.
  6. Asghar, H.N. and Zahir, Z.A., Arshad, M. and Khalid, A. (2002). Relationship between in vitro production of auxins by rhizobacteria and their growth promoting activities in Brassica juncea L. Biol. Fertil. Soil 35: 231–237.
  7. Bhattacharyya, P.N. and Jha, D.K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327–1350.
  8. Brimecombe, M.J., Lelj, F. D., Lynch, J.M. (2001). The Rhizosphere. The effect of root exudates on rhizosphere microbial populations. In: R Pinton; Z Varanini & P Nannipieri (eds.).The Rhizosphere. Biochemistry and Organic Substances at the Soil-Plant Interface. Marcel Dekker, New York, pp 95- 140.
  9. Cakmakci, R., Donmez, F., Aydýn, A. and Fahin, F. (2006). Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38: 1482-1487.
  10. Chaiharn M., Chunhaleuchanon S., Kozo A. and Lumyong S. (2008). Screening of rhizobacteria for their plant growth promoting activities. KMITL Sci. Tech. J. 8: 18-23.
  11. El-Azeem, S., Mehana, T.A. and Shabayek, A.A. (2007). Some plant growth promoting traits of rhizobacteria isolated from Suez Canal region, Egypt. African Crop Sci. Proceed.8:1517–1525.
  12. Fischer, S.E., Jofré, E.C., Cordero, P.V., Gutiérrez-Manero, F.J. and Mori, G.B. (2010). Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. Anton. Van Leeuwen. 97: 241–251.
  13. Glick, B.R. (2012). Plant growth-promoting bacteria: Mechanisms and Applications. Hindawi Publishing Corporation, Scientifica.
  14. Indiragandhi, P., Anandham, R., Madhaiyan, M. and Sa, T.M. (2008). Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microbiol. 56: 327–333.
  15. Jha, P. and Kumar, A. (2009). Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microbial Ecol. 58: 179–188.
  16. Jha, B.K., Pragash, M.G., Cletus, J., Raman, G. and Sakthivel, N. (2009). Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J. Microbial. Biotechnol. 25: 573–581.
  17. Kennedy, I.R., Choudhury, A.T.M.A. and Kecskés, M.L. (2004). Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol. Biochem. 36: 1229–1244.
  18. Kloepper, J.W., Schippers, B. and Bakker, P.A.H.M. (1992). Proposed elimination of the term endorhizosphere. Phytopathol. 82: 726-727.
  19. Kumar, K.V., Singh, N., Behl, H.M. and Srivastava, S. (2008). Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil.Chemosphere 72: 678–683.
  20. Lacava, P.A., Silva-Stenico, M.E., Araújo, W.L., Simionato, A.V.C., Carrilho, E., Tsai, S.M. and Azevedo, J.L. (2008). Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Pesq. Agropec. Bras. 43: 521–528.
  21. Laslo E., Gyorgy, E., Mara, G., Tamas, E., Abraham, B. and Lanyi, S. (2012). Screening of plant growth promoting rhizobacteria as potential microbial inoculants. Crop Protec. 40:43-48.
  22. Lugtenberg, B. and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541–556.
  23. Minaxi, Nain L., Yadav R.C. and Saxena J. (2012). Characterization of multifaceted Bacillus sp RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Appl. Soil Eco. 59: 124-135.
  24. Ogut, M., Fatih Er, and Kandemir, N. (2010). Phosphate solubilization potentials of soil Acinetobacter strains. Biol. Fertil. Soils. 46: 707-715.
  25. Oldal, B., Jevcsák, I. and Kecskés, M. (2002). A sziderofortermel}o képesség szerepe Pseudomonas-törzsek növénypatogén-    antagonista hatásának biológiai vizsgálatában. Biokémia 26: 57-63.
  26. Penrose, D.M. and Glick, B.R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-    promoting rhizobacteria. Physiol. Pl. 118: 10–15.
  27. Rajkumar, M., Ae, N., Prasad, M.N.V. and Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28: 142–149.
  28. Rashid, M., Khalil, S., Ayub, N., Alam, S., Latif, F. (2004). Organic Acids productions solubilization by phosphate solubilizing microorganism (PSM) under in vitro conditions. Pak.J. Biol. Sci, 7:187-196.
  29. Rodrigues, E.P., Rodrigues, L.S., de Oliveira, A.L.M., Baldani, V.L.D., Teixeira, K.R.S., Urquiaga, S. and Reis, V.M. (2008). Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Pl. Soil 302: 249–261.
  30. Saravanakumar, D. and Samiyappan, R. (2007). ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J. Appl. Microbiol. 102: 1283-1292.
  31. Sessitsch, A., Howieson, J.G., Perret, X., Antoun, H. and Martínez-Romero, E. (2002). Advances in Rhizobium research. Crit. Rev. Pl. Sci. 21: 323–378.
  32. Sheng, X.F. and Xia, J.J. (2006). Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-    resistant bacteria. Chemosphere 64: 1036–1042.
  33. Spaepen, S. and Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. http://dx.doi.org/ 10.1101/cshperspect.a001438.
  34. Spaepen, S., Dobbelaere, S., Croonenborghs, A. and Vanderleyden, J. (2008). Effects of Azospirillum brasilense indole-    3-acetic acid production on inoculated wheat plants. Pl. Soil 312: 15-23.
  35. Sylvester-Bradley, R., Askawa, N., La Torraca, S., Magalhães, F.M.N., Oliveira, L., Pereira, R.M. (1982). Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amazônica 12: 15–22.
  36. Tedesco, J.M., Gianelo, C., Bissani, C.A., Bohnen, H., Volkweiss, S.J. (1995). Análise de solo, plantas e outros materiais. In: Boletim Técnico 5. UFRGS, Porto Alegre, 174 pp.
  37. Tsavkelova, E. A., Cherdyntseva, T. A. and Netrusov, A. I. (2005). Auxin production by bacteria associated with orchid roots. Microbiol. 74: 46-53.
  38. Wani, P.A., Khan, M.S. and Zaidi, A. (2007). Co inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron. Hung. 55: 315–323.
  39. Weyens, N., van der Lelie, D., Taghavi, S., Newman, L. and Vangronsveld, J. (2009). Exploiting plante microbe partnerships to improve biomass production and remediation. Trends Biotechnol. 27: 591-598.
  40. Yadav, S.K., Dave, A., Sarkar, A., Singh, H.B. and Sarma, B.K. (2013). Co-inoculated Biopriming with Trichoderma, Pseudomonas and Rhizobium Improves Crop Growth in Cicer arietinum and Phaseolus vulgaris. Int. J.Agricult. Environ. Biotechnol. 6: 255-259.
  41. Yadegari, M., Rahmani, H.A., Noormohammadi, G., Ayneband, A. (2008). Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria on yield and yield components. Pak. J. Biol. Sci. 11:1935–1939
  42. Zaidi, A., Ahemad, M., Oves, M., Ahmad, E., Khan, M,S. (2010). Role of phosphate-solubilizing bacteria in legume improvement. In: Microbes for Legume Improvement. Springer Vienna. pp. 273-292.

Global Footprints