Amelioration of salinity tolerance in cowpea plants by seed treatment with methyl jasmonate
 

DOI: 10.18805/lr.v0i0.8394    | Article Id: LR-326 | Page : 1100-1106
Citation :- Amelioration of salinity tolerance in cowpea plants by seed treatment with methyl jasmonate .Legume Research-An International Journal.2017.(40):1100-1106

Omid Sadeghipour

osadeghipour@yahoo.com
Address :

Department of Agronomy, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, 18155/144, Tehran, Iran 

Submitted Date : 11-10-2016
Accepted Date : 6-02-2017

Abstract

A pot experiment was conducted to investigate the role of methyl jasmonate (MeJA) in alleviation of the adverse effects of salinity on cowpea. Seeds were soaked in 0, 25 and 50 µM MeJA for 20 h and then the seedlings were irrigated with different concentrations of NaCl (0, 50 and 100 mM). Salt stress markedly decreased growth attributes namely shoot length, shoot and root dry weight and leaf area. NaCl stress also significantly reduced chlorophyll value, stomatal conductance, net photosynthetic rate, total soluble proteins and relative water content (RWC). Furthermore, salinity noticeably increased proline and total soluble sugars content. Nonetheless, seeds treatment with MeJA especially 50 µM, improved the growth of cowpea plants by increasing chlorophyll value, stomatal conductance, net photosynthetic rate, total soluble proteins, proline accumulation, total soluble sugars and RWC under salt stress conditions. Thus results indicate that pretreatment of seeds with MeJA could be used as an effective technique for improving cowpea plants tolerance to salt stress.

Keywords

Photosynthesis Proline Proteins Salt stress Sugars Vigna unguiculata L.

References

  1. Abd-Allah, E.F., Abeer H.,. Alqarawi A.A. and Alwhibi Mona S. (2015). Alleviation of adverse impact of salt in phaseolus vulgaris L. by arbuscular mycorrhizal fungi. Pak. J. Bot., 47: 1167-1176.
  2. Abdelgawad, Z.A., Khalafaallah A.A. and Abdallah M.M. (2014). Impact of methyl jasmonate on antioxidant activity and some biochemical aspects of maize plant grown under water stress condition. Agric. Sci., 5: 1077-1088. 
  3. Abeer, H.,. Abd-Allah E.F., Alqarawi A.A. and Egamberdieva D. (2015). Induction of salt stress tolerance in cowpea [Vigna unguiculata (L.) Walp.] by arbuscular mycorrhizal fungi. Legume Res., 38: 579-588.
  4. Aftab, T., Khan M.M.A., Teixeira Da Silva. J.A., Idrees M.. and Moinuddin M.N. (2011). Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. J. Plant Growth Regul., 30: 425-435.
  5. Amiri, A., B. Baninasab., C. Ghobadi. and A.H. Khoshgoftarmanesh. 2016. Zinc soil application enhance photosynthetic capacity and antioxidant enzyme activities in almond seedlings affected by salinity stress. Photosynthetica 54: 267-274.
  6. Avalbaev, A., Yuldashev. R., Fedorova. K., Somov K.., Vysotskaya L., Allagulova C.. and Shakirova F. (2016). Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. J. Plant Physiol., 191: 101-110.
  7. Azooz, M.M., Metwally A. and Abou-Elhamd M.F.. (2015). Jasmonate-induced tolerance of hassawi okra seedlings to salinity in brackish water. Acta Physiol. Plant., 37: 77.
  8. Bates, L.S., Waldren R.P.. and. Teare J.D. (1973). Rapid determination of proline for water stress studies. Plant Soil 39: 205-207.
  9. Bradford, M.M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem., 72: 248-254.
  10. Dar, T.A., Moinuddin Khan. M.M.A., Hakeem K.R.. and Jaleel H.. (2015). Jasmonates counter plant stress: A Review. Environ. Exp. Bot., 115: 49-57.
  11. Dhanyalakshmi, K.H., Vijayalakshmi C.. and Boominathan P.. (2013). Evaluation of physiological and biochemical responses of rice (Oryza sativa L.) varieties to salt stress. Indian J. Agric. Res., 47 (2): 91- 99.
  12. Gulmezoglu, N., Aydogan C.. and Turhan E.. (2016). Physiological, biochemical and mineral dimensions of green bean genotypes depending on Zn priming and salinity. Legume Res., 39 (5): 713-721.
  13. Gupta, B. and Huang B.. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genomics, DOI: 10.1155/2014/701596 Article ID 701596, 18 pages. 
  14. Homme, M.P.P., Gonzalez. B., Billard J.P.. and Boucaud J.. (1992). Carbohydrate content, fructan and sucrose enzyme activities in roots, stubble and leaves of rye grass (Lolium perenne L .) as affected by source/sink modification after cutting. J. Plant Physiol., 140: 282-291.
  15. Hozayn, M., Abdel-Monem A.A.,. Ebtihal M.A.E.M. and Amira M.S.A.. (2013). Amelioration of salinity stress in mung bean (Vigna radiata L.) plant by soaking in arginine. J. Appl. Sci. Res., 9: 393-401.
  16. Hsu, Y.Y., Chao. Y.Y. and Kao C.H. (2013). Methyl jasmonate-induced lateral root formation in rice: The role of heme oxygenase and calcium. J. Plant Physiol., 170: 63-69.
  17. Kang, D.J., Seo. Y.J., Lee J.D., Ishii. R., Kim. K.U., Shin D.H.., Park. S.K., Jang. S.W.and Lee I.J.. (2005). Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J. Agron. Crop Sci., 91: 273-282.
  18. Kausar, F., Shahbaz M.. and Ashraf M.(2013). Protective role of foliar-applied nitric oxide in Triticum aestivum under saline stress. Turk. J. Bot., 37: 1155-1165. 
  19. Kusvuran, A. (2015). The effects of salt stress on the germination and antioxidative enzyme activity of Hungarian vetch (Vicia pannonica Crantz.) varieties. Legume Res., 38 (1): 51-59.
  20. Li, H., Zhu. Y., Hu Y., Han W. and Gong H. (2015). Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol. Plant., 37: 71.
  21. Murillo-Amador, B., Troyo-Dieguez E.., Garcia-Hernandez J.L., Lopez-Aguilar R., Avila-Serrano N.Y., Zamora-Salgado S.,. Rueda-    Puente. E.O and Kaya C.. (2006). Effect of NaCl salinity in the genotypic variation of cowpea (Vigna unguiculata) during early vegetative growth. Sci. Hortic., 108: 423-431.
  22. Nasri, N., Maatallah. S., Kaddour R.. and Lachaal M. (2016). Effect of salinity on Arabidopsis thaliana seed germination and acid phosphatase activity. Arch. Biol. Sci., 68: 17-23.
  23. Poonam, S., Kaur H., and Geetika S. (2013). Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Millsp. seedlings under copper stress. Am. J. Plant Sci., 4: 817-823.
  24. Revathi, S. and Arumugam Pillai M. (2015). Novel approach in screening rice genotype for tolerance to salt stress under hydroponic culture. Agric. Sci. Digest., 35 (4): 308-310.
  25. Sadak, M.S. and Abdelhamid M.T. (2015). Influence of amino acids mixture application on some biochemical aspects, antioxidant enzymes and endogenous polyamines of Vicia faba plant grown under seawater salinity stress. Gesunde Pflanze., 67: 119-129.
  26. Sanchez-Romera, B., Ruiz-Lozano. J.M., Li G., Luu. D.T., Martinez-Ballesta M.C., Carvajal. M., Zamarreño A.M., García-Mina J.M., Maurel C.. and Aroca R. (2014). Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant Cell Environ., 37: 995-1008.
  27. Seif, S.N., Tafazzoli. E., Talaii. A.R., Aboutalebi A.. and Abdosi V. (2014). Evaluation of two grape cultivars (Vitis vinifera L.) against salinity stress and surveying the effect of methyl jasmonate and epibrassinolide on alleviation the salinity stress. Int. J. Biosci., 5: 116-125. 
  28. Singh, M., Kumar. J., Singh. S., Singh V.P.. and Prasad S.M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: A Review. Rev. Environ. Sci. Bio., 14: 407-426.
  29. Tartoura, K.A.H., Youssef S.A. and Tartoura E.A.A. (2014). Compost alleviates the negative effects of salinity via upregulation of antioxidants in Solanum lycopersicum L. plants. J. Plant Growth Regul., 74: 299-310.
  30. Wang, S., Liu. P., Chen D., Yin L., Li H. and Deng X.. (2015). Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Front. Plant Sci., 6: 759.
  31. Wasternack, C. (2014). Action of jasmonates in plant stress responses and development - Applied aspects. Biotechnol. Adv., 32: 31-39.
  32. Yemm, E.W. and Willis A.J.(1954). The estimation of carbohydrates in plant extracts by anthrone. Biochem. J., 57: 508-514.
  33. Yoon, J.Y., Hamayun M., Lee S. and Lee I. (2009). Methyl jasmonate alleviated salinity stress in soybean. J. Crop Sci. Biotech., 12:    63-68.

Global Footprints