Mycorrhizal relationship in lupines: A review

DOI: 10.18805/lr.v40i04.9013    | Article Id: LR-324 | Page : 965-973
Citation :- Mycorrhizal relationship in lupines: A review.Legume Research-An International Journal.2017.(40):965-973
Z.Y. Shi, X.L. Zhang, S.X. Xu, Z.J. Lan, K. Li, Y.M. Wang, F.Y. Wang, Y.L. Chen shizy1116@126.com
Address : College of Agriculture, Henan University of Science and Technology, Luoyang 471003, Henan province, China.
Submitted Date : 10-10-2016
Accepted Date : 23-05-2017

Abstract

Legume crops are widely cultivated with agronomical and economic significance. Majority of legume species are known to form mycorrhizal symbioses. However, plants in the genus Lupinus are generally considered as nonmycorrhizal. In this review, published researches with regards to mycorrhizal colonization and function in lupines were revisited. Research findings on mycorrhizal colonization (field or laboratory conditions) and functions (promotion in plant growth, nutrient uptake and metabolites) are summarized. These studies show that 35 out of 43 Lupinus species are colonized by mycorrhizal fungi although their root colonization rates are very low (<10%). The symbiotic status between mycorrhizal fungi and Lupinus species depend on lupine species, fungal taxa, and edaphic growth conditions. The functions of mycorrhizas on lupines exhibit more on physiology than the absorption of P. The responses of lupines to mycorrhizal fungi changed depending on mycorrhizal and Lupinus species and especially soil P concentrations. Based on current limited studies, conclusions on the nature of mycorrhizal relation in lupine could be compromised unless further studies with detailed field surveys and well-designed experiments are implemented.

Keywords

Lupinus Mycorrhizal symbiosis Arbuscular mycorrhizal fungi Colonization rate Mycorrhizal functions

References

  1. Akiyama, K., Tanigawa, F., Kashihara, T. and Hayashi H. (2010). Lupin pyranoisofl avones inhibiting hyphal development in arbuscular mycorrhizal fungi. Phytochemistry, 71: 1865-1871.
  2. Allen, M.F., Macmahon, J.A. and Ianson, D.C. (1985). Ecesis on Mount St. Helens: can mycorrhizal fungi spread from animal-    dispersed inoculum? In: Proceedings of the 6th North American Conference on Mycorrhizae (Ed. by R. Molina), pp. 291, Forestry Research Laboratory, Corvallis, Oregon.
  3. Avio, L., Sbrana, C. and Giovannetti, M. (1990). The response of different species of Lupinus to VAM endophytes. Symbiosis, 9: 321-323.
  4. Bedmar, E.J. and Ocampo, J.A. (1986). Susceptibilidad de distintas variedades de guisante, veza y lupino a la infeccion por Glomus mosseae. Anales de Edalfologia Agrobiologia. 45: 231-238.
  5. Datta, P. and Kulkarni M. (2014). Influence of two “AM” fungi in improvement of mineral profile in Arachis hypogaea L. under salinity stress. Legume Research, 37 (3): 321-328.
  6. Dudeja S.S., Sheokand S. and Kumari S. (2012). Legume root nodule development and functioning under tropics and subtropics: perspectives and challenges. Legume Research, 35(2): 85-103.
  7. Gianinazzi-Pearson, V. and Gianinazzi S. (1992). Influence of intergeneric grafts between host and non-host legumes on vesicular-    arbuscular mycorrhizal formation. New Phytologist, 120: 505-508.
  8. Gianinazzi-Pearson, V., B. Branzanti. and Gianinazzi S. (1989). In vitro enhancement ot spore germmation and early hyphal growth of a vesicular -arbuscular mycorrhizal fungus by host root exudatts and plant flavonoids. Symbiosis, 1: 243-255.
  9. Giovannetti, M. and Sbrana C. (1998). Meeting a non-host: the behaviour of AM fungi. Mycorrhiza, 8: 123-130.
  10. Giovannetti, M., Avio, L., Sbrana, C and Citemesi A.S. (1993). Factors affecting appressorium development in the vesiculararbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe. New Phytologist, 123: 115-122.
  11. Hashem A., Abd_Allah, E.F., Alqarawi, A.A., Wirth, S. and Egamberdieva, D. (2016). Arbuscular mycorrhizal fungi alleviate salt stress in lupine (Lupinus termis Forsik) through modulation of antioxidant defense systems and physiological traits. Legume Research, 39(2): 198-207.
  12. Hood, S.C. (1964). A classification of the symbiotic relation of funlgi with plant roots. Hood Laboratory Bulletin 8, 32 pp., Tampa, Florida.
  13. Indriani N.P., Yuwariah, Y., Rochana, A., Susilawati, I. and Khairani, L. (2016). The role of Vesicular Arbuscular Mycorrhiza (VAM) and rock phosphate application on production and nutritional value of centro legumes(Centrosema pubescens). Legume Research, 39(6): 987-990.
  14. Jones, F.R. (1924). A mycorrhizal fungus in the roots of legumes and some other plants. Journal of Agricultural Research, 29: 459-470.
  15. Lambers, H., Clements, J.C. and Nelson, M.N. (2013). How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus , Fabaceae). American Journal of Botany, 100(2): 263-288. 
  16. Lusnikova A.A. (1970). Mikoriza dekorativnykh travyanistykh rasteniz. Uchenye Zapiski Permskii Gosvdostvennyi Pedagogicheskii Institu. 80: 57-66.
  17. Lynd, J.Q. and Ansman, T.R. (1995). Mycorrhizal etiology of favorable proteoid rhizogenesis, nodulation, and nitrogenase of lupines. Journal of Plant Nutrition, 18: 11, 2365-2377.
  18. Morley, C.D. and Mosse, B. (1976). Abnormal vesicular-arbuscular mycorrhizal infections in white clover induced by lupin. Transactions of the British Mycological Society, 67: 510-513.
  19. O7: 510-513. of the British Mycologic Root endophytes of lupin and some other legumes in northwestern USA. New Phytologist, 122:479-485.
  20. Oba, H., Tawaray, K. and Wagatsuma, T. (2001). Arbuscular mycorrhizal colonization in Lupinus and related genera. Soil Science and Plant Nutrition, 47: 685-694.
  21. Oba, H., Tawaraya K. and Wagatsuma T. (2002). Inhibition of pre-symbiotic hyphal growth of arbuscular mycorrhizal fungus Gigaspora margarita by root exudates of Lupinus spp.. Soil Science and Plant Nutrition, 48:1,117-120
  22. O’Dell, T.E. (1992). Mycorrhizal and other Root Endophytic Fungi of Lupines in the Pacific Northwest. Oregon State University.
  23. Pachlewski, R. (1958). Badania mikotrofizmu naturalnych zes- polow roslinnych na haldach gornikzaych w Knurowiei Gliwicach na g6rnym slasku. [Studies on the mycotrophy of natural plant communities on the waste tips of Knurow and Glivice (upper Silesia)]. Prace Instytut Badawezy Lesnictwa, 182: 173-209.
  24. Ramana, V., Ramakrishna, M., Purushotham, K. and Reddy K.B. (2010). Effect of bio-fertilizers on growth, yield attributes and yield of french bean (Phaseolus vulgaris L.). Legume Reserach, 33(3): 178-183.
  25. Schlicht A. (1889). Beitraige zur Kenntnis der Verbreitung und der Bedeutung der Mykorrhizen. (Contributions to knowledge of the distribution and significance of mycorrhizae.) Landwirt- schaftliche Jahrbuecher, 18: 477-506.
  26. Snyder, C.S. (1984). Sweetgum seedling growth and endo- mycorrhizal colonization as affected by soil fumigation and cover crops. Ph.D. Thesis. North Carolina State University, USA.
  27. Thomas, W.D.J.R. (1943). Mycorrhizae associated with some Colorado flora. Phytopathology, 32: 144-149.
  28. Thompson, J.P. and Wildermuth, G.B. (1989). Colonization of crop and pasture species with vesicular-arbuscular mycorrhizal fungi and a negative correlation with root infection by Bipolaris sorokiniana. Canadian Journal of Botany, 67: 687-693.
  29. Trinick, M.J. (1977). Vesicular-arbuscular infection and soil phosphorus utilization in Lupinus spp. New Phytologist, 78: 297-304.
  30. Vierheilig, H., Alt, M., Mohr, U., Boller, T. and Wiemken, A. (1994). Ethylene biosynthesis and activities of chitinase and nase and ynthesis and activities of chitinase and itinase and se and narbuscular mycorrhizal fungi after inoculation with Glomus mosseae. Journal of Plant Physiology, 143: 337-343. 

Global Footprints