The effects of olive wastewater on the early growth of fababean and Rhizobium nodulation
 

DOI: 10.18805/lr.v0i0.7855    | Article Id: LR-318 | Page : 546-550
Citation :- The effects of olive wastewater on the early growth of fababean and Rhizobium nodulation .Legume Research-An International Journal.2017.(40):546-550

İlkay YAVAŞÜmit Özyılmaz, Aydın ÜNAY and Barış Kayhan

iyavas@adu.edu.tr
Address :

Department of Plant and Animal Production, Adnan Menderes University, Kocarli Vocational High School, 09100 Aydýn, Turkey

Submitted Date : 13-09-2016
Accepted Date : 9-01-2017

Abstract

Olive processing waste (OPW) is a by-product of olive oil production. Most of the studies about olive processing waste are carried-out in cotton, sunflower, wheat etc. However, there is little research performed on the effects of OPW on legumes. Therefore, the effect of OPW on growth of fababean and Rhizobium bacteria was studied in this research.  It was used in doses of 0 (control), 18, 30 and 42 grams per pot, which is equivalent to doses of 3, 5 and 7 kg m-2. Increasing concentration of OPW improved the root fresh weight, nodule area, nodule diameter, root nodules scale value and the number of Rhizobium in one gram nodules. The results showed that the optimum OPW dose was 30 g pot-1 according to plant growth, nodules and Rhizobium. It was concluded that the OPW concentrations of 3% and it’s below can be used for fababean growing.

Keywords

Faba bean Minimum inhibitory concentration Nodule Olive processing waste Rhizobium.

References

  1. Alfano, G.,  Lustrato G.,  Lima G.,  Vitullo D.,  Delfine S.,  Tognetti R. and  Ranalli G.. (2009). Physico-chemical, microbiological,         agronomical, and phytopathological aspects in the recycling of olive waste composted residues. dynamic soil.         Dynamic Plant 3 (Special Issue 1): 64-72. 
  2. Bai, B.,  Suri V.K., Kumar A. and  Choudhary A.K. (2016a). Influence of Glomus–Rhizobium symbiosis on productivity, root         morphology and soil fertility in garden pea in Himalayan acid Alfisol. Commun. Soil Sci. Pl. Anal. 47(6): 787-798. 
  3. Bai, B.,  Suri V.K.,  Kumar A., and  Choudhary A.K. (2016b). Influence of dual–inoculation of AM fungi and Rhizobium on         growth indices, production economics and nutrient use efficiencies in garden pea (Pisum sativum L.). Commun.         Soil Sci. Pl. Anal. 47(8): 941-954. 
  4. Bhattacharjya, S. and  Chandra R. (2013).  Effect of Inoculation Methods of Mesorhizobium ciceri and PGPR in Chickpea         (Cicer areietinum L.) on Symbiotic Traits, Yields, Nutrient Uptake and Soil Properties. Legume Res. 36 (4): 331-337.
  5. Boz, O., D. Ogut. and M.N. Dogan. 2010. The phytotoxicity potential of olive processing waste on selected weeds and         crop plants. Phytoparasitica. 38: 291-298.
  6. Choudhary, A.K. (2013). Technological and extension yield gaps in pulses in Mandi district of Himachal Pradesh. Indian J.         Soil Conser. 41(1): 88-97.
  7. Choudhary, A.K. and  Suri.V.K (2013). Scaling-up of pulse production under frontline demonstration technology transfer         program in Himachal Himalayas, India. Commun. Soil Sci. Pl. Anal. 45(14): 1934-1948.
  8. Di Paolo, E.,  Garofalo P. and  Rinaldi M. (2015). Irrigation and nitrogen fertilization treatments on productive and qualitative         traits of broad bean (Vicia faba var. minor L.) in a Mediterranean environment. Legume Res. 38 (2) : 209-218.
  9. El Hadrami, A.,  Belaqziz M., El Hassani  M.,  Hanifi S.,  Abbad A., Capasso R.,  Gianfreda L. and  El Hadrani. I. (2004). Physci-        chemical characterization and effects of olive mill wastewaters fertirrigation on the growth of some Mediterranean         crops. Journal of Agron. 3: 247-254. 
  10. Jähne, B. (2004).  Practical Handbook on Image Processing for Scientific and Technical Applications, Second Edition. 
  11.     610p. CRC Press. 
  12. Kumar, J. (2011). Effect of Phosphorus and Effect of Phosphorus and Rhizobium Inoculation on the Growth, Nodulation and         Yield of Garden Pea (Pisum sativum L.) cv. “Mattar Ageta-6”. Legume Res. 34 (1): 20-25.
  13. Kumar, A., Choudhary. A.K. and Suri V.K. (2016). Influence of AM fungi, inorganic phosphorus and irrigation regimes on         plant water relations and soil physical properties in okra (Abelmoschus esculentus L.)–pea (Pisum sativum L.)         cropping system in Himalayan acid Alfisol. J. Pl. Nutr. 39(5): 666-682.
  14. Mekki, A., Dhourb A. , Aloui F.. and  Sayadi. S. (2006). Olive wastewater as an ecelogical fertiliser. Agron. Sust. Dev. 26: 61-67.
  15. Moraetis, D.,  Stamati F.E.,  Nikolaidis N.P. and  Kalogerakis N.. (2011). Olive mill wastewater irrigation of maize: Impacts         on soil and groundwater. Agric. Water Manage. 98 (7): 1125-1132.
  16. Neemar, D.P.,  Jain S.K. and  Mathur V.L. (2007). Estimation of Genetic Variability for Nitrogen Fixation in Black Gram         Genotypes with Different Strains of Rhizobium. Legume Res. 30 (4): 275-278.
  17. Nektarios, P.A.,  Ntoulas N.,  McElroy S., Volterrani M. . and  Arbis G.. (2011). Effect of Olive Mill Compost on Native             Characteristics and Tall Fescue Turfgrass Development. Agron.J. 100 (5): 1524-1531.
  18. Ogola, J.B.O. (2015). Growth and yield response of chickpea to Rhizobium inoculation: productivity in relation to interception         of radiation. Legume Res. 38 (6): 837-843.
  19. Ouzounidou, G., Asfi  M. and  Moustakas M. (2008a). The ýmpact of olive-mill wastewaters on physiology and nutritional         value of peas. VI International ISHS Symposium on mineral nutrition of fruit crops. Book of Abstracts. 84 p.
  20. Ouzounidou, G., Asfi M.,  Sotirakis N., Papadopoulou P. and  Gaitis F. (2008b). Olive mill wastewater triggered changes in         physiology and nutritional of tomato (Lycopersicon esculentum Mill.) depending on growth substrate. J. Hazardous         Mat. 158 (2-3): 523-530.
  21. Piotrowska, A.,  Iamarino G.,  Rao M.A. and  Gianfreda. L. (2006). Short-term effects of olive mill waste water (OMW) on         chemical and biochemical properties of a semiarid Mediterranean soil. Soil Biology and Biochem. 38 (3): 600-610.
  22. Pooniya, V.,  Choudhary A.K., Dass A. ,  Bana R.S.,  Rana K.S., Rana D.S. ,  Tyagi V.K. and  Puniya. M.M. (2015). Improved         crop management practices for sustainable pulse production: An Indian perspective. Indian J. Agric. Sci. 85 (6): 747-758.
  23. Pradhan, S.K.,  Sarkar S.K., Prakash S. (2001). Varietal response of sunnhemp, Crotalaria juncea L. to Rhizobium japonicum         (cowpea type) with reference to dynamics of nodulation. Legume Res. 24(3): 164-168.
  24. Rana, K.S.,  Choudhary A.K.,  Sepat S., Bana R.S. and Dass A.( 2014). Methodological and Analytical Agronomy [ISBN:         978-93-83168-07-1]. Post Graduate School, IARI, New Delhi, India, pp 276 + xii. 
  25. Simms, E.L.,  Taylor D.L.,  Povich J., Shefferson R.P. ,  Sachs J.L., Urbina M.. and  Tausczik Y. (2006). An empirical test of         partner choice mechanisms in a wild legume-rhizobium interaction. Proc. Royal Soc.,  B7, 273 (1582): 77-81.
  26. Sofiadou, E. and  Tzortzakis N.G.. (2012). Olive mill waste as a substitute growing medium component in tomato seedling         and crop production. Int. J. Veg. Sci. 18 (3): 272-283.
  27. Suri, V.K. and  Choudhary A.K. (2013). Effects of vesicular arbuscular mycorrhizae and applied phosphorus through             targeted yield precision model on root morphology, productivity and nutrient dynamics in soybean in an Acid         Alfisol. Commun. Soil Sci. Pl. Anal. 44 (17): 2587-2604.
  28. Workalemahu, A. (2009). The effects of ýndigenous root-nodulating bacteria on nodulation and growth of faba bean (Vicia         faba) in the low-ýnput agricultural systems of Tigray Highlands, Northern Ethiopia. Momona Ethiopian J. Sci. 1(2): 30-43.

Global Footprints