DOI: 10.5958/j.0976-0571.37.1.004    | Article Id: LR-3052 | Page : 26-31
D. Vyas*, J. Munot, S. R. Maloo, A. Dashora and D. Rajpurohit okdivya@gmail.com
Address : Rajasthan College of Agriculture, Maharana Pratap Univ. of Agric. Technology, Udaipur- 313 001, India


The genetic diversity among fifteen genotypes of groundnut was studied by random amplified polymorphic DNA (RAPD) analysis. Total 15 be primers were used to detect polymorphism but only 13 primers showed amplification. Out of 13 primers amplified, 11 primers showed variable degree of polymorphism ranged from 25 per cent (S-31) to 100 per cent (OPD-02), whereas two primers viz. OPA-02 and S-67 showed monomorphism. Thirteen RAPD primers amplified 54 fragments, out of which 28 were polymorphic (51.85%). The number of fragments amplified per primer ranged from 3 to 5 and their sizes ranged between ~150 bp to ~1800 bp. Cluster analysis classified fifteen genotypes of groundnut into six main groups. The pair wise similarity values ranged from 76 to 94 per cent and showed that genotypes UG-109 and UG-110 were the closest with highest similarity value (94%), while genotypes UG-100 and GG-7 were most distinct with minimum similarity value (69%). RAPD marker can be used effectively for characterization of groundnut.


Diversity Groundnut Polymorphism RAPD Similarity coefficient.


  1. Amadou, H.I., Bebeli, P.J. and Kalsikes, P.J. (2001). Genetic diversity in bambara groundnut (Vigna subterranean L.)         germplasm revealed by RAPD markers. Genome, 44: 995-999.
  2. Bhagwat, A., Krishna, T.G. and Bhatia, C.R. (1997). RAPD analysis of induced mutants of groundnut (Arachis hypogaea         L.). Journal of Genetic, 76(3): 201-208.
  3. Doyle, J.J. and  Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.
  4. Dwivedi, S.L., Gurtu, S., Charndra, S., Yuejin, W. and Nigam, S.N. (2001). Assessment of genetic diversity among         selected groundnut germplasm RAPD analysis. Plant Breeding, 120: 345-349.
  5. FAO. (2009). Food and Agricultural Organization of the United Nation, FAO Statistical Database http://faostat.fao.org/        faostat/collections? subset=agriculture.
  6. Garcia, G.M., Stalker, H.T., Schroeder, E., Lyerly, J.H. and Kochert, G. (2005). A RAPD-based linkage map of peanut         based on a backcross population between the two diploid species Arachis stenosperma and A. cardenasii.         Peanut Sciences, 32: 1-8.
  7. Gupta, P.K., Kumar, J., Mir, R.R. and Kumar, A. (2010). Marker-assisted selection as a component of conventional         plant breeding. Plant Breed. Rev., 33:14–21.
  8. Jaccard, P. (1908). Nouvelles researcherches sur la distribution florale. Bulletin Societe Vaudoise des Sciences Natulelles,         44: 233-270.
  9. Kumari, V., Gowda, M.V.C. and Bhat, R. (2009). Molecular characterization of induced mutants in groundnut using         Random Amplified Polymorphic DNA markers. Karnataka Journal of Agriculture Science, 22: 276-279.
  10. Reddy, K. (2004). RAPD based diversity among released cultivars and advanced breeding lines in groundnut (A. hypogaea         L.). 3rd International Conference for Groundnut Genomics and Biotechnology on Advances in Arachis through         Genomics and Biotechnology, 4-8 November.  ICRISAT, Hyderabad (AP), India.
  11. Rohlf, F.J. (2004). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, version 2.02h, Exeter Software,         New York.
  12. Rungnoi, O., Suwanprasert, J., Somta, P. and Srinives, P. (2012). Molecular genetic diversity of bambara groundnut         (Vigna subterranea L. Verdc.) revealed by RAPD and ISSR marker analysis. SABRAO Journal of Breeding and         Genetics, 44 (1): 87-101.
  13. Sneath, P.H.A. and Sokal, R.R. (1973). Numerical taxonomy: The principle and practice of numerical classification.         W.F. Freeman & CO; San Francisco. pp. 573.
  14. Subramanian, V., Gurtu, S., Rao, R.C.N. and Nigam, S.N. (2000). Identification of DNA polymorphism in cultivated         groundnut using Random Amplified Polymorphic DNA (RAPD) assay. Genome, 43: 656-680.
  15. Varshney, R.K., Graner, A. and Sorrells, M.E. (2005a). Genomics-assisted breeding for crop improvement. Trends Plant         Sci, 10: 621–630.

Global Footprints