Article Id: LR-2818 | Page : 467-472
D. Shoba, N. Manivannan*, P. Vindhiyavarman and S.N. Nigam1 nmvannan@gmail.com
Address : Department of Oilseeds, Tamil Nadu Agricultural University, Coimbatore- 641 003, INDIA


TMV 2, a LLS susceptible genotype and the COG 0437, a LLS resistant genotype were crossed and their F2 population was used for marker analysis in the present investigation. The phenotypic mean data on F2:3 progenies were used as phenotype. Seventy seven SSR markers were used for the parental polymorphism. Among SSR markers, nine markers were found polymorphic between the parents    TMV 2 and COG 0437. Eight markers formed a linkage group and covered a distance of 37.2 cM with an average 4.65 cM at LOD 3.0.  The composite interval mapping analysis resulted in two QTLs viz., each one for hundred kernel weight and LLS severity score with 6.1 and 37.9 R2 respectively.  The nearest marker for QTLs of hundred kernel weight and LLS severity score were Ah 4-26 and PM 384 respectively.  The markers PMc 588 (3.9 cM) and Ah 4-26 (4.3cM) are the flanking markers for PM 384 and hence these flanking markers can be used for marker assisted breeding for LLS resistance.  The parent COG 0437 is the major contributor for both of these QTLs.  Considering the phenotypic variation explained by these QTLs, identification of more effective QTLs for hundred kernel weight is required to utilise in the marker assisted breeding programme.  However the LLS QTL has 37.9 per cent of phenotypic variation explained and hence can be effectively utilised in marker assisted breeding programme.  By using these QTLs, plant breeders can effectively monitor the flow of inheritance of the resistance characters along with desirable phenotypic traits.


Groundnut Hundred kernel weight Late leaf spot  QTL SSR markers.


  1. Benbouza, H., Jacquemin, J.M., Baudoin, J.P. and Mergeai, G. (2006). Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol. Agron. Soc. Environ., 10(2):77-81.
  2. Churchill, G.A. and Doerge, R.W. (1994). Empirical threshold values for quantitative trait mapping. Genetics, 138:963–971.
  3. Doerge, R.W. and Churchill, G.A. (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics, 142:285–294.
  4. Doyle , J.J. and Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull., 19: 11-15.
  5. Dudley, J. W. (1993). Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci., 33:660-668.
  6. Dwivedi, S.L., Gurtu, S. ,Chandra, S., Yuejin, W. and Nigam, S.N. (2001). Assessment of genetic diversity among selected groundnut germplasm. I:RAPD analysis. Plant Breed.,120:345-349.
  7. Halward, T.M. and Wynne, J.C. (1991). Generation means analysis for productivity in two diverse peanut crosses. Theor. Appl. Genet., 82: 784–792.
  8. He, G. and Prakash, C.S.(2001). Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using markers. Genet. Resour. Crop Evol., 48:347-352.
  9. Khedikar, Y. P. , Gowda, M. V. C. , Sarvamangala, C. , Patgar, K. V. , Upadhyaya, H. D. and Varshney, R. K. ( 2010). A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet., 121:971–984.
  10. Krishna, G.K., Zhang, J.F., Burow, M. , Pittman, R.N., Lu, Y., Puppala, N. and Elikostadinov, S.G. (2004). Genetic diversity analysis in Valencia peanut (Arachis hypogaea L.) using microsatellite markers. Cell.and MoleC.Biol.Letters., 9: (4a):685-697.
  11. Mace, E.S., Phong, D.T., Upadhaya, H.D., Chandra, S. and Crouch, J.H. (2006). SSR analysis of cultivated groundnut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases. Euphytica, 152 (3) :317-330.
  12. Pande, S. and Rao, N.J. (2001). Resistance of wild Arachis species to late leaf spot and rust in greenhouse trials. Plant Dis., 85:851–858.
  13. Raina, S.N., Rani, V. , Kojima, T., Ojihara, Y., Singh, K.P. and Devarumath, R.M. (2001). RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome, 44(5): 763-772.
  14. Ribaut, J. M., Banziger, M., Betran, J., Jiang, C., Edmeades, G. O., Dreher, K. and Hoisington, D. (2002). In: ‘Quantitative Genetics, Genomics and Plant Breeding’. (Ed. Kang, M.S.) 85-99.
  15. Sax, K. (1923). The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 8: 552–560.
  16. Selvaraj, M.G., Narayana, M., Schubert, A.M., Ayers, J.L., Baring, M.R. and Burow, M.D. (2009). Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. E.J. Biotech., 12(2):13.
  17. Singh, A.K., Smartt, J., Simpson, C.E. and Raina, S.N. (1998). Genetic variation vis-à-vis molecular polymorphism in groundnut, Arachis hypogaea L. Genet. Resour. Crop. Evol., 45:119-126.
  18. Subrahmanyam, P. ,Reddy, L.J. , Gibbons, R.W. and McDonald, D. (1985). Peanut rust: A major threat to peanut production in the semi arid tropics. Plant Dis., 69: 813-819.
  19. Subrahmanyam, P., McDonald, D., Waliyar, F., Reddy, L.J. , Nigam, S.N. , Gibbons, R.W. Rao, V.R. , Singh, A.K. Pande, S. , Reddy, P.M. and Subba Rao, P. V. (1995). Screening Methods and Sources of Resistance to Rust and late leaf spot of groundnut. Information Bulletin No. 47. ICRISAT, Patancheru PO 502324, AP, India, p. 24.
  20. Subramanian, V., Gurtu, S. , Rao, R.C.N. and Nigam, S.N. (2000). Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA(RAPD) assay.Genome,43:656-660.
  21. Tiwari, S.P., Ghewande, M.P. and Misra, D.P. (1984). Inheritance of resistance to rust and late leaf spot in groundnut (Arachis hypogaea). J.Cytol. Genet., 19:97-101.
  22. Varshney, R.K., Hoisington, D.A., Upadhyaya, H.D., Gaur, P.M., Nigam, S.N., Saxena, K. , Vadez, V., Sethy, N.K. , Bhatia, S., Aruna, R. , Gowda, M.V.C. and Singh, N.K. (2007). Molecular genetics and breeding of grain legume crops for the semi-arid tropics. In: Varshney, R.K. Tuberosa, R. Dordrecht (eds) Genomic assisted
  23. crop improvement genomics applications in crops. Springer, The Netherlands, p. 207-242.
  24. Varshney, R.K., Bertioli, D.J. , Moretzsohn, M.C., Vadez, V., Krishnamurthy, L., Aruna, R. Nigam, S. N., Moss, B.J. , Seetha, K. , Ravi, K., He, G., Knapp, S.J. and Hoisington, D.A. (2008). The first SSR based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor. And Appl. Genet., 118:729-739.
  25. Voorrips, R.E. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered., 93:77– 78.
  26. Waliyar, F. (1991). Evaluation of yield losses due to groundnut leaf diseases in West Africa. In: Nduguru, B.J. Waliyar, F. and Ntare, B.R. eds,. Summary Proc. Of the Second ICRISAT Regional Groundnut Meeting for West Africa. ICRISAT Sahelian Centre, Niamey, Niger, p.32-33.
  27. Wang, C.T., Yang, X.D. , Chen, D.X. , Yu, S.L. , Liu, G.Z. , Tang, Y.Y., and Xu, J.Z. (2007). Isolation of simple sequence repeats from groundnut. E. J. Biotech., 10 (3):473-480.
  28. Young, N.D., Weeden, N.F. , and Kochert, G. (1996). Genome mapping in legumes (Fam. Fabaceae). In: Paterson A.H, Austin (eds) Genome mapping in plants. Landes Company, USA, pp 211–227.
  29. Zeng, Z.B. (1993). Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA, 90:10972–10976.
  30. Zeng, Z.B. (1994). Precision mapping of quantitative trait loci. Genetics, 136:1457–1468.

Global Footprints