Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 40 issue 2 (april 2017) : 291-298

Cardinal temperatures and thermal time required for emergence of lenti (Lens culinaris Medik)

Ali reza Safahani*, Behnam Kamakar, Amir Nabizadeh
1<p>Department of Agronomy,&nbsp;Payame Noor University, Tehran, I. R. of Iran.</p>
Cite article:- Safahani* reza Ali, Kamakar Behnam, Nabizadeh Amir (2017). Cardinal temperatures and thermal time required foremergence of lenti (Lens culinaris Medik) . Legume Research. 40(2): 291-298. doi: 10.18805/lr.v0i0.7301.

The present study was performed to compare four nonlinear regression models (segmented, beta, beta modified, and dent-like) to describe the emergence rate–temperature relationships of six lentil (Lens culinaris Medik) cultivars at field experiment with a range of sowing dates, with the aim of identifying the cardinal temperatures and physiological days (i.e., number of days under optimum temperatures) required for seedling emergence. Models and statistical indices were calibrated using an iterative optimization method and their performance was compared by root mean square error (RMSD), coefficient of determination (R2) and corrected Akaike information criterion correction (AIC). The beta model was found to be the best model for predicting the response of lentil emergence to temperature, (R2= 0.99; RMSD= 0.005; AICc= -232.97). Based on the model outputs, the base, optimum, and maximum temperatures of seedling emergence were 4.5, 22.9, and 40 °C, respectively. The Six physiological days (equivalent to a thermal time of 94 °C days) were required from sowing to emergence. 

  1. Bare, C.E., Tooke, V.K. and Gentner, W.A. (1978). Temperature and light effects on germination of Papaver bracteatum, P. orientale and P. somniferum L. Planta Med. 34: 135–143. 

  2. Bradford, K.J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy, Weed Sci. 50: 248–260.

  3. Bradford, K.J. (1995). Water relations in seed germination. In Seed Development and Germination, [J. Kigel and G. Galili, eds] Marcel Dekker, New York: pp. 351-396. 

  4. Brown, R.F. and Mayer, D.G. (1988). Representing cumulative germination: 2. The use of the Weibull function and other empirically derived curves, Ann. Bot. 61: 127–138.

  5. Burnham, K.P. and Anderson D.R. (2002). Model selection and multimodel inference: a practical information–theoretic approach, Springer-Verlag, New York.

  6. Ellis, R.H. and Barrett, S. (1994). Alternating temperatures and rate of seed germination in lentil. Ann. Bot. 74: 519–524.

  7. Ellis, R.H., Covell, S., Roberts, E.H. and Summerfield, R.J. (1986). The influence of temperature on seed germination rate in grain legumes: II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures, J. Exp. Bot. 37: 1503–1515.

  8. Forcella, F., Benech Arnold, R.L., Sanchez, R. and Ghersa, C.M. (2000). Modeling seedling emergence, Field Crops Res. 67: 123–139. 

  9. Fry, K.E. (1983). Heat-unit calculations in cotton crop and insect models, United States Department of Agriculture, Oakland, California. 

  10. Jame, Y.W.and Cutforth, H.W. (2004). Simulating the effect of temperature and sowing depth on germination and emergence of spring wheat. Agric. For. Meteorol. 124: 207–218. 

  11. Kamkar, B., Jami Al-Alahmadi, M., Mahdavi-Damghani, A. and Villalobos, F.J. (2012). Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models, Ind. Crops Prod. 35: 192–198.

  12. Kamkar, B., Ahmadi, M., Soltani, A. and Zeinali, E. (2008). Evaluating non-linear regression models to describe response of wheat emergence rate to temperature, Seed Sci. Biotechnol. 2: 53–57.

  13. Mwale, S.S., Azam-Ali, S.N., Clark, J.A., Bradley, R.G. and Chatha, M.R. (1994). Effect of temperature on germination of sunflower. Seed Sci. Technol. 22: 565–571. 

  14. O’Meara, J.M., Burles, S., Prochaska, J.X. Prochter, G.E. Bernstein, R.A. and Burgess, K.M. (2006). The deuterium-to-    hydrogen abundance ratio toward the QSO SDSS J155810. 16-003120.0, Astrophys. J. 649: 61–65.

  15. Piper, E.L., Boote, K.J., Jones, J.W. and Grimm, S.S. (1996). Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Sci. 36: 1606–1614.

  16. Rahban, S., Resam, G., Torabi, B. and Yazdi, A.K. (2014). Evaluation of regression models for quantifies germination response to temperature in lenti (Lens culinaris Medik). Crop Eco physiology, 2: 229-242. (In Persian)

  17. Ritchie, J.T. (1991). Wheat phasic development. In: Hanks, R.J., Ritchie, J.T., (Eds.,) Modeling Plant, Soil, Systems, Agronomy Monograph, No., 31, pp. 31–54.

  18. Robertson, M.J., Carberry, P.S., Huth, N.I., Turpin, J.E., Probert, M.E., Poulton, P.L., Bell, M., Wright, G.C., Yeates, S.J. and Brinsmead, R.B. (2002). Simulation of growth and development of diverse legume species in APSIM. Aust. J. Agric. Res. 53: 429–446. 

  19. Roman, E.S., Murphy, S.D. and Swanton, C.J. (2000). Simulation of Chenopodium album seedling emergence, Weed Sci. 48: 217–224.

  20. Shafii, B. and Price, W.J. (2001). Estimation of cardinal temperatures in germination data analysis, J. Agric. Biol. Environ. Stat. 6: 356–366.

  21. Soltani, A., Robertson, M.J., Torabi, B., Yousefi-Daz, M. and Sarparast, R. (2006). Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agric. For. Meteorol. 138: 156–167.

  22. Soltani, A., Galeshi, S., Zeinali, E. and Latifi, N. (2002). Germination, seed reserve utilization and seedling growth of chickpea as affected by salinity and seed size. Seed Sci. Technol. 30: 51–60. 

  23. Soltani, A., Zeinali, E., Galeshi, S. and Latifi, N. (2001). Genetic variation for and interrelationships among seed vigor traits in wheat from the Caspian Sea coast of Iran. Seed Sci. Technol. 29: 653–662.

  24. Stapper, M. and Lilley, J.M., Evaluation of simtag and wheat in simulating wheat phenology in Southeastern Australia, Proceedings of the 10th Australian Agronomy Conference, Hobart, 2001 Available at http://www.regional.org.au/    au/asa/ 2001/1/d/stapper.htm (accessed August 2012). 

  25. Timmermans, B.G.H. , Vos, J., Van Nieuwburg, J., Stomph, T.J. and Van der Putten, P.E.L. (2007). Germination rates of Solanum sisymbriifolium: temperature response models, effects of temperature fluctuations and soil water potential, Seed Sci. Res. 17: 221. 

  26. Vigil, M.F., Anderson, R.L. and Beard, W.E. (1997). Base temperature and growing dergree hour requirements for emergence of canola. Crop Sci. 37: 844–849. 

  27. Wade, L.J., Hammer, G.L. and Davey, M.A. (1993). Response of germination to temperature amongst diverse sorghum hybrids. Field Crops Res. 31: 295–308.

  28. Wang, R. (2005). Modeling seed germination and seedling emergence in Winterfat (Krascheninnikovia lanata (Pursh) A.D.J. Meeuse and Smit): physiological mechanisms and ecological relevance, University of Saskatchewan.

Editorial Board

View all (0)