Loading...

Polymorphism of follicle stimulating hormone receptor influences the 3D structure and its binding pattern to FSH in Bos taurus

DOI: 10.18805/ijar.v0iOF.7607    | Article Id: B-502 | Page : 630-634
Citation :- Polymorphism of follicle stimulating hormone receptor influences the 3D structure and its binding pattern to FSH in Bos taurus .Indian Journal of Animal Research.2017.(51):630-634

Hamny Hamny, Muhammad Jalaluddin, Siti Aisyah, Sri Wahyuni, Widodo and Aulanniam Aulanniam

jurnaljurnal123@gmail.com
Address :

Laboratory of Anatomy, Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh, Indonesia.

Submitted Date : 20-04-2016
Accepted Date : 14-09-2016

Abstract

Follicle stimulating hormone (FSH) bond with the extracellular domain of the FSH receptor (FSHR) stimulates a cascade of the intracellular process that leads to folliculogenesis. This study aimed to elucidate the effects of FSHR polymorphism of its structure and function on Bos taurus through computational technology. The FSHR sequences were retrieved from Genebank. The polymorphism was identified using alignment analysis and the 3D structure of the FSHR was done by Swiss models. Results showed that FSHR of Bos taurus has three polymorphisms that located at amino acid residues 18th to 259th. The polymorphisms may alter its ability to bind with FSH. Molecular docking analysis indicated that all variant of FSHR potentially changes the pattern and affinity binding into FSH that may have an impact on reproduction status of Bos taurus. The study is a warrant for further investigation to explore biomarker of cattle reproduction status based on FSHR gene.

Keywords

Amino acid Bos Taurus FSHR Polymorphism Protein.

References

  1. Apweiler R. (2001). Functional information in Swiss-Prot : the basis for large-scale characterisation of protein sequence.         Brief Bioinform. 2: 9-18.
  2. Balkan M, Gedik A, Akkoc H, Ay OI, Erdal ME, Isi H and Budak T. (2010). FSHR single nucleotide polymorphism         frequencies in proven fathers and infertile men in Southeast Turkey, J Biomed Biotech. 2010(2010): 5 pages. doi:         10.1155/2010/640318.
  3. Cory AT, Price CA, Lefebvre R and Palin MF. (2013). Identification of single nucleotide polymorphisms in the bovine         follicle-stimulating hormone receptor and effects of genotypes on superovulatory response traits. Anim Genet.         44: 197-201. doi: 10.1111/j.1365-2015.2012.02380.x.
  4. Edgar RC. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC         Bioinformatics. 19: 113-131.
  5. Ekins S, Mestres J and Testa B. (2007). In silico pharmacology for drug discovery: methods for virtual ligand screening         and profiling. Br J Pharmacol. 152: 9-20. 
  6. Eramian D, Shen MY, Devos D, Melo F, Sali A and Marti-Renom MA. (2006). A composite score for predicting errors in         protein structure models. Protein Sci. 15: 1653-1666.
  7. Gaviria SM, Herrera AL, Zuluaga JJE. (2016). Association between FSHR polymorphism with productive and reproductive         traits in antioquia holstein catlle. Rev Fac Nal Agr. 69: 7793-7801. doi: 10.15446/rfna.v69n1.54747.
  8. Hall TA. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/        NT. Nucleic Acids Symp. Ser. 41: 95-98.
  9. Kang B, Jiang DM, Zhou RJ and Yang HM. (2010). Expression of follicle-stimulating hormone receptor (FSHR) mRNA in         the ovary of Zi geese during developmental and egg-laying stages. Folia biol. (Krakow). 58: 61-66.
  10. Laskowski RA and Swindells MB. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug dicovery. J         Chem Inf Model. 51: 2778-2786. doi: 10.1021/ci200227u.
  11. Liu F, Baggerman G, Schoofs L and Wets G. (2008). The construction of a bioactive peptide database in Metazoa. J         Proteome Res. 7: 4119-4131. doi: 10.1021/pr800037n.
  12. Macindoe G, Mavridis L, Venkatraman V, Devignes M and Ritchie DW. (2010). HexServer: an FFT based protein docking         server powered by graphics processors. Nucleic Acids Res. 38: W445-W449. doi: 10.1093/nar/gkq311.
  13. Marson EP, Ferraz JBS, Meirelles FV, Balieiro JCC and Eler JP. (2008). Effects of polymorphisms of LHR and FSHR         genes of sexual precocity in a Bos taurus x Bos indicus beef composite population. Genet Mol Res. 7: 243-251.
  14. Minegishi T, Tano M, Igarashi M, Rokukawa S, Abe Y, Ibuki Y and Miyamoto K. (1997). Expression of follicle-stimulating         hormone in human ovary. Eur. J Clin Invest. 27: 469-474.
  15. Othman OE, Abdel-Samad MF. (2013). RFL polymorphism of three fertility genes in Egyptian buffalo, J Appl Biol Sci.         7: 94-101.
  16. Schymkowitz JWH, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher F and Serrano L. (2005). Prediction of water and         metal binding site and their affinities by using the Fold-X force field. Proc Natl Acad Sci. 102: 10147-10152.         doi: 10.1073/pnas.0501980102.
  17. Shen MY and Sali A. (2006). Statistical potential for assessment and prediction of protein structure. Protein Sci. 15:2507-        2524. doi: 10.1110/ps.062416606.
  18. Simoni M, Gromoll J and Nieschlag E. (1997). The follicle-stimulating hormone receptor: biochemistry, molecular biology,     physiology, and pathophysiology. Endocr Rev. 18:739-773.
  19. Simoni M, Nieschlag E and Gromoll J. (2002). Isoforms and single nucleotide polymorphisms of FSH receptor gene:         implications for human reproduction. Hum Reprod Update. 8: 413-421.
  20. Singhasena W, Pantasri T, Piromlertamom W, Samchimchom S and Vutyavanich T. (2014). Follicle-stimulating hormone         receptor gene polymorphism in chronic anovulatory women, with or without polycystic ovary syndrome: a cross-        sectional study. Reprod Biol Endocrinol. 12: 86-92. doi: 10.1186/1477-7827-12-86.
  21. Sosa ASA, Mahmoud KGM, Eldebaky HAA, Kandiel MMM, Abou El-Roos MEA and Nawito MF. (2015). Genotyping of         follicle stimulating hormone receptor gene in fertil and infertile buffalo. Global Veterinar. 15: 163-168. doi:         10.5829/idosi.gv.2015.15.02.96166.
  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M and Kumar S. (2011). MEGA5 : molecular evolutionary genetics         analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol.         28: 2731-2739. doi: 10.1093/molbev/msr121.
  23. Ulloa-Aguirre A and Timossi C. (1998). Structure-function relationship of follicle-stimulating hormone and its receptor.         Hum Reprod Update. 4: 260-283.
  24. Whitfield EJ, Pruess M and Apweiler R. (2006). Bioinformatics database infrastructure for biotechnology research. J         Biotechnol. 124: 629-639.
  25. Wielsch N, Thomas H, Surendranath V, Waridel P, Frank A, Pevzner P and Shevchenko A. (2006). Rapid validation of         protein identifications with the borderline statistical confidence via de novo sequencing and MS BLAST searches,         J Proteome Res. 5: 2448-2456.
  26. Xu Z, Garverick HA, Smith GW, Smith MF, Hamilton SA and Youngquist RS. (1995). Expression of follicle-stimulating         hormone and luteinizing hormone receptor messenger ribonucleic acids in bovine follicles during the first follicular         wave. Biol Reprod. 53: 951-957.
  27. Yang WC, Tang KQ, Li SJ, Chao LM and Yang LG. (2012). Polymorphisms of the bovine luteinizing hormone/        choriogonadotropin receptor (LHCGR) gene and its association with superovulation traits. Mol Biol Rep. 39:         2481-2487. doi: 10.1007/s11033-011-0999-4.
     

Global Footprints