Indian Journal of Agricultural Research

  • Chief EditorT. Mohapatra

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.20

  • SJR .258 (2022)

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus

Evaluation of Seasonal Differences in the Antioxidant Activity of Needle Juices of Picea abies L. and Pinus sylvestris L. with Luminol-enhanced Chemiluminescence

K.N. Bushmeleva, A.B. Vyshtakalyuk, D.A. Terenzhev, E.N. Nikitin
  • Email
1Laboratory for Plant Raw Material Conversion for Organic Farming, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia.
Cite article:- Bushmeleva K.N., Vyshtakalyuk A.B., Terenzhev D.A., Nikitin E.N. (2021). Evaluation of Seasonal Differences in the Antioxidant Activity of Needle Juices of Picea abies L. and Pinus sylvestris L. with Luminol-enhanced Chemiluminescence. Indian Journal of Agricultural Research. 55(3): 265-272. doi: 10.18805/IJARe.A-596.
Background: Coniferous tree species typical of the central part of Russia can be evaluated not only as sources of wood but also as a raw material for obtaining biologically active substances.
Methods: A comparative evaluation of needle juices of Pinus sylvestris and Picea abies in the summer and winter periods was the objective of this study and carried out in this study by chemiluminescence analysis and testing for membrane-protective activity. Juices were evaluated for the content of flavonoids and ascorbic acid, which some authors suggest are markers of stress in plants. An increase in the content of flavonoids and ascorbic acid in Pinus sylvestris L. in the summer period is a sign of an adaptive reaction of plants to the high intensity of ultraviolet radiation, which is typical for the growing conditions of pine as a photophilous plant. An increase in these indicators in Picea abies L. in winter is a sign of the plant stress response to low temperatures. 
Result: The membrane-protective activity of needle juices concerning peroxidation and osmotic hemolysis was revealed, which is more prominent in Pinus sylvestris L. needle juice. The analysis revealed more prominent antioxidant properties in the juice of Pinus sylvestris L. needles compared to that of Picea abies L. both in summer and in winter.
  1. Agrawal, A. and Sharma B. (2012). Natural products and their antioxidant potential. Natural Products: An Indian Journal. 8(2): 72-87. 
  2. Bianchi, S., Koch, G., Janzon, R., Mayer, I., Saake, B., Pichelin, F. (2016). Hot water extraction of Norway spruce (Picea abies [Karst.]) bark: analyses of the influence of bark aging and process parameters on the extract composition. Holzforschung. 70(7): 619-631. doi.org/10.1515/hf-2015-0160.
  3. Blokhina, O., Virolainen, E., Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany. 91(2): 179-194. doi.org/10.1093/aob/mcf118.
  4. Bushmeleva, K.N., Sudakov, I.A., Vyshtakalyuk, A.B., Terenzhev, D.A., Nikitin, E.N. (2019). Antioxidant properties of the mixed product from juice and extract of Abies sibirica Ledeb. European Journal of Clinical Investigation. 29(S1): 118-119. doi.org/10.1111/eci.13109.
  5. da Silva, K.D., Collares, F.P., Finzer, J.R.D. (2000). A simple and rapid method for estimating the content of solids in industrialized cashew juice. Food Chemistry. 70(2): 247-250. doi.org/10.1016/S0308-8146(00)00043-1. 
  6. Desmarchelier, C., Repetto, M., Coussio, J., Llesuy, S., Ciccia, G. (1997). Total reactive antioxidant potential (TRAP) and total antioxidant reactivity (TAR) of medicinal plants used in Southwest Amazonia (Bolivia and Peru). International Journal of Pharmacognosy. 35(4): 288-296.doi.org/10.1076/phbi.35.4.288.13303.
  7. Fischbach, R., Kossmann, B., Panten, H., Steinbrecher, R., Heller, W., Seidlitz, H. (1999). Seasonal accumulation of ultraviolet-B screening pigments in needles of Norway spruce [Picea abies (L.) Karst.]. Plant, Cell and Environment. 22(1): 27-37. doi.org/10.1046/j.1365-3040.1999.00390.x.
  8. Formazyuk, V. (2003). Encyclopedia of Food Medicinal Plants: Cultural and Wild Plants in Practical Medicine. Kiev: ASK.
  9. Foyer, C.H., Noctor, G. (2005). Oxidant and antioxidant signalling in plants: a re evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment. 28(8): 1056-1071. doi.org/10.1111/j.1365-3040.2005.01327.x.
  10. Fuksman, I., Novitskaya, L., Isidorov, V., Roshchin, V. (2015). Phenol compounds in conifers under stress. Russian Journal of Forest Science. 3: 4-10.
  11. Garg, S. (2020). Flavonoids: Biosynthesis, Metabolism, Mechanism of Antioxidation and Clinical Implications: A Review. Agricultural Reviews. 41(3). doi.org/10.18805/ag.R-1922.
  12. Gill, S.S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48(12): 909-930. doi.org/10.1016/j.plaphy.2010.08.016. 
  13. Gilson, A., Barthes, L., Delpierre, N., Dufrêne, E., Fresneau, C., Bazot, S. (2014). Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence. Tree Physiology. 34(7): 716–729. doi.org/10.1093/tree phys/tpu060.
  14. Gupta, V.K, Yarla, N.S., Pereira, M.L., Siddiqui, N.J., Sharma, B. (2020). Recent Advances in Ethnopharmacological and Toxicological Properties of Bioactive Compounds from Aloe barbadensis (Miller), Aloe vera. Current Bioactive Compounds. 16(1). doi.org/10.2174/1573407216999200818092937.
  15. Haberer, K., Jaeger, L., Rennenberg, H. (2006). Seasonal patterns of ascorbate in the needles of Scots Pine (Pinus sylvestris L.) trees: Correlation analyses with atmospheric O3 and NO2 gas mixing ratios and meteorological parameters. Environmental Pollution. 139(2): 224-231. doi.org/10.1016/j.envpol.2005.05.015.
  16. Hallgren, J. (1990). Adaptations to low temperature. Stress responses in plants: adaptation and acclimation mechanisms.
  17. Kilic, A., Hafizoglu, H., Tümen, I., Dönmez, I., Sivrikaya, H., Hemming, J. (2011). Phenolic extractives of cones and berries from Turkish coniferous species. European Journal of Wood and Wood Products. 69(1): 63-66. doi.org/10.1007/s00107-010-0433-y.
  18. Kochetova, M.V., Semenistaya, E.N., Larionov, O.G., Revina, A.A. (2007). Determination of biologically active phenols and polyphenols in various objects by chromatographic techniques. Russian Chemical Reviews. 76(1): 88-100.dx.doi.org/10.1070/RC2007v076n01ABEH003632.
  19. Kormut’ak, A., Galgoci, M., Bolecek, P., Gomory, D. (2019). Antioxidant enzyme activity in Pinus mugo Turra, P. sylvestris L. and in their putative hybrids. Biologia. 74(6): 631-638. doi.org/10.2478/s11756-019-00198-y.
  20. Korotaeva, N., Ivanova, M., Suvorova, G., Borovskii, G. (2018). The impact of the environmental factors on the photosynthetic activity of common pine (Pinus sylvestris) in spring and in autumn in the region of Eastern Siberia. Journal of Forestry Research. 29(6): 1465-1473. doi.org/10.1007/s11676-017-0582-5.
  21. Krasowska, A., Rosiak, D., Szkapiak, K., Lukaszewicz, M. (2000). Chemiluminescence detection of peroxyl radicals and comparison of antioxidant activity of phenolic compounds. Current Topics in Biophysics. 24(2): 89-95.
  22. Lee, J.H., Ham, H., Kim, M.Y., Ko, J.Y., Sim, E.Y., Kim, H.J., Lee, C.K., Jeon, Y.H., Jeong, H.S., Woo, K.S. (2018). Phenolic compounds and antioxidant activity of adzuki bean cultivars. Legume Research-An International Journal. 41(5): 681-688. doi.org/10.18805/LR-381.
  23. Lissi, E., Salim-Hanna, M., Pascual, C., del Castillo, M.D. (1995). Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemilumine scence measurements. Free Radical Biology and Medicine. 18(2): 153-158. doi.org/10.1016/0891-5849(94)00117-3.
  24. Mannila, E. (1993). Biologically active stilbene derivatives from Picea abies bark by isolation and modification.
  25. Olenichenko, N., Ossipov, V. and Zagoskina, N. (2006). Effect of cold hardening on the phenolic complex of winter wheat leaves. Russian Journal of Plant Physiology. 53(4): 554-559. doi.org/10.1134/S1021443706040108.
  26. Plaksina, I.V., Sudachkova, N.E., Romanova, L.I. and Milyutina, I.L. (2009). Phenolic compounds seasonal dynamics in Pinus Silvestris L. and Pinus Siberica du Tour inner bark and needles at different planting densities. Chemistry of Plant Raw Material. 1: 103-108.
  27. Pukacka, S, Pukacki, PM (2000). Seasonal changes in antioxidant level of Scots pine (Pinus sylvestris L.) needles exposed to industrial pollution. I. Ascorbate and thiol content. Acta Physiologiae Plantarum. 22(4): 451-456. doi.org/10.1007/ s11738-000-0088-0. 
  28. Rehfeldt, G.E., Tchebakova, N.M., Parfenova, Y.I., Wykoff, W.R., Kuzmina, N.A., Milyutin, L.I. (2002). Intraspecific responses to climate in Pinus sylvestris. Global Change Biology. 8(9): 912-929. doi.org/10.1046/j.1365-2486.2002.00516.x. 
  29. Rice-Evans, C., Miller, N. and Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science. 2(4): 152-159. doi.org/10.1016/S1360-1385(97) 01018-2. 
  30. Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S and Radice M (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry. 91(4): 621-632. doi.org/10.1016/j.foodchem.2004.06.031.
  31. Singh, M., Poonia, M.K., Kumhar, B.L. (2017). Climate change: Impact, adaptation and mitigation: A review. Agricultural Reviews. 38(1): 67-71. doi.org/10.18805/ag.v0iOF.7309. 
  32. Singh, N., Yarla, N.S., Siddiqi, N.J., Pereira, M.L., Sharma, B. (2020) Features, Pharmacological chemistry, molecular mechanism and health benefits of Citrus limon (L.). Medicinal Chemistry. 16:1-16. doi.org/10.2174/1573406416666200909104050.
  33. Singh, R.K. and Sharma, B. (2013) Certain traditional Indian plants and their therapeutic applications: A review. VRI Phytomedicine. 1(1): 1-11. http://dx.doi.org/10.14259/pm.v1i1.23.
  34. Sharonova, N.L., Terenzhev, D.A., Bushmeleva, K.N., Gumerova, S.K., Lyubina, A.P., Fitsev, I.M., Belov, T.G. (2019). Phytochemical contents, antimicrobial and antioxidant properties of Gnaphalium uliginosum L. ethanolic extract and essential oil for agricultural uses. Asian Journal of Chemistry. 31(11): 2672-2678. doi.org/10.14233/ajchem. 2019.22366.
  35. Sorokina, O.N., Sumina, E.G., Petrakova, A.V., Barysheva, S.V. (2013). Spectrophotometric analysis of the total contents of flavonoids in medical phyto preparations. Izvestiya of Saratov University. New Series. Series: Chemistry. Biology. Ecology. 13(3): 8.
  36. Sowemimo-Coker, S.O. (2002). Red blood cell hemolysis during processing. Transfusion Medicine Reviews. 16(1): 46-60.
  37. Talbi, S., Romero-Puertas, M.C., Hernandez, A., Terron, L., Ferchichi, A., Sandalio, L.M. (2015). Drought tolerance in a Saharian plant Oudneya africana: role of antioxidant defences. Environmental and Experimental Botany. 111: 114-126. doi.org/10.1016/j.envexpbot.2014.11.004. 
  38. Treutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology. 7(6): 581-591. doi.org/10.1055/s-2005-873009. 
  39. Vyshtakalyuk, A.B., Semenov, V.E., Sudakov, I.A., Bushmeleva, K.N., Gumarova, L.F., Parfenov, A.A., Nazarov N.G., Galyametdinova, I.V., Zobov, V.V. (2018). Xymedon conjugate with biogenic acids. Antioxidant properties of a conjugate of Xymedon with L-ascorbic acid. Russian Chemical Bulletin. 67(4): 705-711. doi.org/10.1007/s11172-018-2126-3.
  40. Zolfaghari, R., Hosseini, S., Korori, S. (2010). Relationship between peroxidase and catalase with metabolism and environmental factors in Beech (Fagus orientalis Lipsky) in three different elevations. International Journal of Environmental Sciences. 1(2): 243-252.
  41. Zuo, R., Zhou, S., Zuo, Y., Deng, Y. (2015). Determination of creatinine, uric and ascorbic acid in bovine milk and orange juice by hydrophilic interaction HPLC. Food Chemistry. 182: 24-245. doi.org/10.1016/j.foodchem. 2015.02.142. 

Editorial Board

View all (0)