Nanoencapsulation- A Novel Strategy for Enhancing the Bioactivity of Essential Oils: A Review

DOI: 10.18805/IJARe.A-5806    | Article Id: A-5806 | Page : 241-248
Citation :- Nanoencapsulation- A Novel Strategy for Enhancing the Bioactivity of Essential Oils: A Review.Indian Journal of Agricultural Research.2022.(56):241-248
Neha Sharma, Proloy Sankar Dev Roy, Aasiya Majeed, Khalid H. Salaria, Rashmi Chalotra, Shubham Kailas Padekar, Sanjay Guleria guleria71@gmail.com
Address : Natural Product-cum-Nano Lab, Division of Biochemistry, Faculty of Basic Sciences, Sher-e- Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus Chatha, Jammu-180 009, Jammu and Kashmir, India.
Submitted Date : 26-04-2021
Accepted Date : 23-12-2021


An upsurge in the global demand for safe and healthy food with minimal synthetic preservatives has raised the need for natural antimicrobial agents. Plant based products, especially essential oils (EOs) exhibit strong antimicrobial activities that could play a significant role as a novel source of food preservatives. However, hydrophobicity, high volatility, susceptibility to oxidation, low stability and solubility limit the uses of essential oils. Therefore, nanoencapsulation could be promising technique to address these limitations as it prevents the exposure and degradation of essential oils, by creating a physical barrier that protects the bioactive constituents. Furthermore, it also facilitates their controlled release, resulting into enhanced bioavailability as well as efficacy in the food system. Present review highlights the various encapsulating methods and provides insight about some encapsulated essential oils and their bioactive properties.


Antimicrobial Essential oils (EOs) Nano-encapsulation Preservatives


  1. Ait-Ouazzou, A., Loran, S., Arakrak, A., Laglaoui, A., Rota, C., Herrera, A., Pagán, R., Conchello, P. (2012). Evaluation of the chemical composition and antimicrobial activity of Menthapulegium, Juniperusphoenicea and Cyperus longus essential oils from Morocco. Food Research International. 45: 313-319.
  2. Akolade, J.O., Nasir-Naeem, K.O., Swanepoel, A., Yusuf, A.A., Balogun, M., Labuschagne, P. (2020). CO2-assisted production of polyethylene glycol / lauric acid microparticles for extended release of Citrus aurantifolia essential oil. Journal of CO2 Utilization. 38: 375-384.
  3. Arumugam, G., Swamy, M., Sinniah, U. (2016). Plectranthus amboinicus (Lour.) Spreng: Botanical, phytochemical, pharmacological and nutritional significance. Molecules. 21: 369.
  4. Atef, M., Rezaei, M., Behrooz, R. (2015). Characterization of physical, mechanical and antibacterial properties of agar - cellulose bio-nano-composite films incorporated with savory essential oil. Food Hydrocolloids. 45: 150-157. 
  5. Augustin, M.A. and Sanguansri, P. (2009). Nanostructured materials in the food industry. Advances in Food and Nutrition Research. 58(4): 183-213.
  6. Bastos, L.P.H., Vicente, J., dos Santos, C.H.C., de Carvalho, M.G. and Garcia-Rojas, E.E. (2020). Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids. 102: 105605.
  7. Beatovic, D., Krstic-Milosevic, D., Trifunovic, S., Siljegovic, J., Glamoclija, J., Ristic, M., Jelacic, S. (2015). Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve Ocimum basilicum L. cultivars grown in Serbia. Records of Natural Products. 9: 62-75.
  8. Bisht, D.S., Menon, K., Singhal, M.K. (2014). Comparative antimicrobial activity of essential oils of Cuminum cyminum L. and Foeniculum vulgare Mill. seeds against salmonella typhimurium and Escherichia coli. Journal of Essential Oil-Bearing Plants. 17: 617-622.
  9. Breitmaier, E. (2006). Terpenes: Flavors, fragrances, pharmaca, pheromones. John Wiley and Sons. Builders, P.F., Arhewoh, M.I. (2016). Pharmaceutical applications of native starch in conventional drug delivery. Starch Staerke. 68: 864-873.
  10. Chaudhari, A.K., Singh, V.K., Das, S. and Dubey, N.K. (2021). Nanoencapsulation of essential oils and their bioactive constituents: A novel strategy to control mycotoxin contamination in food system. Food and Chemical Toxicology. 149: 112019.
  11. Deepika, Singh, A., Chaudhari, K.A., Das, S., Dubey, K.N. (2020). Nanoencapsulated Monardacitriodora Cerv.ex Lag. essential oil as potential antifungal and antiaflatoxigenic agent against deterioration of stored functional food. Journal of Food Science and Technology. 57: 2863-2876.
  12. Dev, V.G., Hemamalini, T. (2018). Porous electrospun starch rich polycaprolactoneblend nanofibers for severe hemorrhage.  International Journal of Biological Macromolecules. 118: 1276-1283.
  13. Dihifi, W., Bellili, S., Jazi, S., Bahloul, N., Mnifi, W. (2016). Essential oils Chemical characterization and investigation of some biological activities-A critical review. Medicines. 3(4): 25. 
  14. Dima, C., Cotarlet, M., Alexe, P., Dima, S. (2014). Microencapsulation  of essential oil of pimento [Pimenta dioica (L.) Merr.] by chitosan/k-carrageenan complex coacervation method. Innovative Food Science and Emerging Technology. 22: 203-211.
  15. Ding, Y., Li, W., Zhang, F., Liu, Z., Ezazi, N.Z., Liu, D., Santos, H.A. (2019). Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy. Advanced Functional Materials. 29(2): 1-35.
  16. Dorman, H.J.D., Deans, S.G. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology. 88: 308-316.
  17. Esfandiari, N., Ghoreishi, M. (2015). Ampicillin nanoparticles production via supercritical CO2 gas  antisolvent process. American Association of Pharmaceutical Scientists Pharma Science and Technology. 16: 1263-1269.
  18. Ezhilarasi, P.N., Karthik, P., Chhanwal, N., Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components, A review. Food and Bioprocess Technology. 6(3): 628-647.
  19. Feng, X., Li, J., Zhang, X., Liu, T., Ding, J., Chen, X. (2019). Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. Journal of Controlled Release. 302: 19-41.
  20. Feyzioglu, G.C., Tornuk, F. (2016). Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT-Food Science and Technology. 70: 104-110.
  21. Garcia-Moreno, P.J., Stephansen, K., Vander, K.J., Guadix, A., Guadix, E.M., Chronakis, I.S., Jacobsen, C. (2016). Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability. Journal of Food Engineering. 183: 39-49.
  22. Gholipourkanani, H., Lymbery, A., Buller, N. (2019). In vitro antibacterial activity of four nano encapsulated herbal essential oils against three bacterial fish pathogens. Aquatic. Research. 50(3): 871-875.
  23. Hasheminejad, N., Khodaiyan, F., Safari, M. (2019). Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles, Food Chemistry. 275: 113-122.
  24. Herman, R.A., Ayepa, E., Shittu, S., Fometu, S.S., Wang, J. (2019). Essential oils and their Applications-A mini review. Advances in Nutrition and Food Science. 4(4): 1-13.
  25. Jafari, S.M., Assadpoor, E., Bhandari, B., He, Y. (2008). Nanoparticle encapsulation of fish oil by spray drying. Food Research International. 41(2): 172-183.
  26. Jaiturong, P., Sirithunyalug, B., Eitsayeam, S., Asawahame, C., Tipduangta, P., Sirithunyalug, J. (2018). Preparation of glutinous rice starch/polyvinyl alcohol copolymer electrospun fibers for using as a drug delivery carrier. Asian Journal of Pharmaceutical Sciences. 13(3): 239-247.
  27. Jamil, B., Abbasi, R., Abbasi, S., Imran, M., Khan, S.U., Ihsan, A., Javed, S., Bokhari, H. (2016). Encapsulation of cardamom essential oil in chitosan nano-composites: In vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies. Frontiers in Microbiology. 7: 1580.
  28. Jaworek, A., Sobczyk, A.T. (2008). Electrospraying route to nanotechnology: An overview. Journal of Electrostatics. 66: 197-219. 
  29. Kalagatur, N.K., Ghosh, O.S.N., Sundararaj, N. and Mudili, V. (2018). Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Frontiersin Pharmacology. 9.
  30. Kapustova, M., Granata, G., Napoli, E., Puskarova, A., Buckova, M., Pangallo, D. and Geraci, C. (2021). Nanoencapsulated essential oils with enhanced antifungal activity for potential application on agri-food, material and environmental fields. Antibiotics. 10: 31.
  31. Keven, E.S., Angela, M., Meireles, A. (2014). Encapsulation of food compounds using supercritical technologies: Applications of supercritical carbon dioxide as an antisolvent. Food and Public Health. 4(5): 247–258.
  32. Kfoury, M., Auezova, L., Greige-Gerges, H. and Fourmentin, S. (2019). Encapsulation in cyclodextrins to widen the applications of essential oils. Environmental Chemistry Letters. 17(1): 129-143.
  33. Khalili, S.T., Mohsenifar, A., Beyki, M., Zhaveh, S., Rahmani-Cherati, T., Abdollahi, A., Bayat, M. and Tabatabaei, M. (2015). Encapsulation of thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Food Science and Technology. 60: 502-508.
  34. Kujur, A., Kiran, S., Dubey, N.K. and Prakash, B. (2017). Microencapsulation of Gaultheria procumbens essential oil using chitosan- cinnamic acid microgel: Improvement of antimicrobial activity, stability and mode of action. LWT - Food Science and Technology. 86: 132-138.
  35. Kujur, A., Kumar, A., Yadav, A. and Prakash, B. (2020). Antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated Pelargonium graveolens L. essential oil and its mode of action. LWT- Food Science and Technology. 130: 109619.
  36. Kumar, A., Singh, P. and Gupta, V. (2020). In: Applications of nanotechnology to boost the functional and preservatives properties of essential oils. Functional and Preservative properties of phytochemicals, Elseiver Inc. (pp.241-267)
  37. Ladj-Minost, A. (2012). In: Long-acting arthropod repellents: Pharmacotechnical study, becoming in situ and efficacy (Doctoral dissertation).
  38. Lambert, R.J.W., Skandamis, P.N., Coote, P. and Nychas, G.J.E. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology. 91: 453-462.
  39. Lopes-Lutz, D., Alviano, D.S., Alviano, C.S. and Kolodziejczyk, P.P. (2008). Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry. 69: 1732-1738.
  40. Mahato, N., Sharma, K., Koteswararao, R., Sinha, M., Baral, E. and Cho, H.M. (2019). Citrus essential oils: Extraction, authentication and application in food preservation. Critical Reviews in Food Science and Nutrition. 59: 611-625. 
  41. Modzeleweska, A., Sur, S., Kumar, K.S. and Khan, S.R. (2005). Sesquiterpenes: Natural products that decrease cancer growth. Current Medicinal Chemistry-Anti-Cancer Agents. 5(5): 477-499.
  42. Mohammadi, A., Hashemi, M. and Hosseini, S.M. (2015). Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biology and Technology. 110: 203-213.
  43. Mohammadi, A., Hashemi, M. and Hosseini, S.M. (2015b). Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innovative Food Science and Emerging Technologies. 28: 73-80.
  44. Mozafari, M.R. (2006). Bioactive Entrapment and Targeting using Nanocarrier Technologies: An Introduction. In: Nanocarrier Technologies: [Mozafari, M.R. (Ed.)], Frontiers of Nanotherapy. Springer, Netherlands, pp. 1.
  45. Napoli, E., Siracusa, L., Ruberto, G. (2020). New tricks for old guys: Recent developments in the chemistry, biochemistry, appli- cationsand exploitation of selected species from the Lamiaceae family. Chem. Biodiver. 17: 1900677.
  46. Nazzaro, F., Fratianni, F., Martino, L.D., Coppola, R. and Feo, V.D. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 6: 1451-1474.
  47. Nerome, H., Machmudah, S., Wahyudiano, F.R., Higashiura, T., Youn, Y-S., Lee, Y-W., Gato, M. (2013). Nanoparticle formation of lycopene/â-cyclodextrin inclusion complex using supercritical anti- solvent precipitation. Journal of Supercritical Fluids. 83: 97-103.
  48. Pandit, J., Aqil, M. and Sultana, Y. (2016). Nanoencapsulation technology to control release and enhance bioactivity of essential oils. In Encapsulations. Academic Press. (pp. 597-640).
  49. Pichersky, E., Noel, J.P. and Dudareva, N. (2006). Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science. 311: 808-811.
  50. Pophof, B., Stange, G. and Abrell, L. (2005). Volatile organic compounds as signals in a plant-herbivore system: Electrophysiological responses in olfactory sensilla of the moth Cactoblastis cactorum. Chemical Senses. 30: 51-68.
  51. Rasoli, I., Fakoor, M.H., Yadegarinia, D., Gachkar, L., Allameh, A. and Rezaei, M.B. (2008). Antimycotoxigenic characteristics of Rosmarinus officinalis and Trachyspermum copticum L. essential oils. International Journal of Food Microbiology. 122: 135-139.
  52. Ravi Kumar, N.M. (2000). Nano and microparticles as controlled drug delivery devices. Journal of Pharm and Pharmaceutical Sciences. 3: 234-258.
  53. Rosset, V., Ahmed, N., Zaanoun, I., Stella, B., Fessi, H. and Elaissari, A. (2012). Elaboration of argan oil nanocapsules containing naproxen for cosmetic and transdermal local application. Journal of Colloid Science and Biotechnology. 1(2): 218- 224.
  54. Rostamabadi, H., Assadpour, E., Tabarestani, H.S., Falsafi, S.R., Jafari, S.M. (2020). Electrospinning approach for nanoencapsulation of bioactive compounds; Recent advances and innovations, Trends in Food Science and Technology. 100: 190-209.
  55. Safayhi, H., Sabieraj, J., Sailer, E.R. and Ammon, H.P. (1994). Chamazulene: An antioxidant-type inhibitor of leukotriene B4 formation. Planta Medica. 60: 410-413.
  56. Sanguansri, P. and Augustin, M.A. (2006). Nanoscale materials development- A food industry perspective. Trends in Food Science and Technology. 17(10): 547-556.
  57. Santos, N.O., Mariane, B., Lago, J.H., Sartorelli, P., Rosa, W., Soares, G.M., Silva, D.M.A., Lorenzii, H., Vallim, A.M. and Pascon, C.R. (2015). Assessing the chemical composition and antimicrobial activity of essential oils from Brazilian plants- Eremanthu serythropappus (Aster-aceae), Plectrantuns barbatus and P. amboinicus (Lamiaceae). Molecules. 20: 8440-8452. 
  58. Scott, P.W.R. (2005). In: Encyclopedia of Analytical Science. Essential Oils. [Worsfold, P., Townshend, A., Poole, C. (Eds.)], Second ed. Elsevier, London, UK, pp. 554-561.
  59. Sebesan, M. and Caraban, A. (2008). Analysis of the essential oils from thyme (Thymus vulgaris L) and from peppermint (Mentha piperita L). Chemical Bulletin. 53: 1-2. 
  60. Sell, C.S. (2006). In: The Chemistry of Fragrance. From Perfumer to Consumer, 2nd ed.; The Royal Society of Chemistry: Cambridge, UK, p. 329.
  61. Sherry, M., Charcosset, C., Fessi, H. and Greige-Gerges, H. (2013). Essential oils encapsulated in liposomes: A review. Journal of Liposome Research. 23(4): 268-275.
  62. Shetta, A., Kegere, J. and Mamdouh, W. (2019). Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in vitro release, antioxidant and antibacterial activities. International Journal of Biological Macromolecules. 126: 731-742.
  63. Sikkema, J., de Bont, J.A.M. and Poolman, B. (1994). Interactions of cyclic hydrocarbons with biological membranes. Journal of Biological Chemistry. 269: 8022-8028.
  64. Silva, H.D., Cerqueira, M.A., Vicente, A.A. (2012). Nanoemulsions for food applications: development and characterization. Food Bioprocess Technology. 5: 854-867.
  65. Singh, V.K., Das, S., Dwivedy, A.K., Rathore, R. and Dubey, N.K. (2019). Assessment of chemically characterized nanoencapuslated Ocimum sanctum essential oil against aflatoxigenic fungi contaminating herbal raw materials and its novel mode of action as methyglyoxal inhibitor. Postharvest Biology and Technology. 153: 87-95.
  66. Singh, A., Chaudhari, K.A., Das, S., Dubey, K.N. (2020). Nanoencapsulated Monarda citriodora Cerv.ex Lag. essential oil as potential antifungal and antiaflatoxigenic agent against sedeterioration of stored functional food. Journal of Food. Science and Technology. 57: 2863-2876.
  67. Solans, C., Izquierdo, P., Nolla, J., Azemar, N. and Garcia-Celma, M.J. (2005). Nano-emulsions. Current Opinion in Colloid and Interface Science. 10: 102–110.
  68. Sonneville-Aubrun, O., Simmonet, J.T. and Alloret, F.L. (2004). Nanoemulsions: A new vehicle for skin care products. Advances in Colloid and Interface Science. 145-149.
  69. Sotelo-Boyas, M.E., Correa-Pacheco, Z.N., Bautista-Ba-nos, S. and Corona-Rangel, M.L. (2017). Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. Food Science and Technology. 77: 15-20.
  70. Tiwari, S., Singh, B.K., Dubey, N.K. (2020). Encapsulation of essential oils-A booster to enhance their bio-efficacy as botanical preservatives. Journal of Scientific Research. 64: 175-178.
  71. Tongnuanchan, P. and Benjakul, S. (2014). Essential oils: Extraction, bioactivities and their uses for food preservation. Journal of Food Science. 79: 1231-1249.
  72. Vainstein, A., Lewinsohn, E., Pichersky, E. and Weiss, D. (2001). Floral Fragrance. New Inroads into an Old Commodity. Plant Physiology. 27: 1383-1389.
  73. Wang, P., Ding, M., Zhang, T., Wu, T., Qiao, R., Zhang, F., Wang, X., Zhong, J. (2020). Electrospraying Technique and Its Recent Application Advances for Biological Macromolecule Encapsulation of Food Bioactive Substances, Food Reviews International. 1-24. 
  74. Yadav, A., Kujur, A., Kumar, A., Singh, P. P., Prakash, B. and Dubey, N.K. (2019). Assessing the preservative efficacy of nanoencapsulated mace essential oil against food borne molds, aflatoxin B1contamination and free radical generation. LWT - Food Science and Technology. 108: 429-436.
  75. Yao, F., Gao, Y.H., Chen, F.S., Xia, Y.M. (2021). Effects of electrospinning parameters on peanut protein isolate nanofibers diameter. Journal of Food. 19: 729-738.
  76. Zhu, Y., Chen, Y., Xu, G., Ye, X., He, D., Zhong, J. (2012). Micropattern of Nano-hydroxyapatite/silk Fibroin Composite onto Ti Alloy Surface via Template-assisted Electrostatic Spray Deposition. Materials Science and Engineering C. 32: 390-394. 
  77. Zuidam, N.J., Shimoni, E. (2010). Overview of Microencapsulation use in Food Products or Processes and Methods to Make Them. In: Encapsulation Technique for Active Food Ingredients and Food Processing. [N.J. Zuidamand, V.A., Nedovic (Eds.)], New York: Springer. (pp. 3-29).

Global Footprints