Indian Journal of Agricultural Research

  • Chief EditorT. Mohapatra

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 51 issue 4 (august 2017) : 345-349

Ovicidal and toxic effects of certain plant extracts to the castor semilooper, Achaea janata L. (Noctuidae:  Lepidoptera)

Ashwini A. Devarshi, S. R. Yankanchi
1<p>Department of Zoology, Shivaji University,&nbsp;Kolhapur - 416 004, Maharashtra, India.</p>
Cite article:- Devarshi A. Ashwini, Yankanchi R. S. (2017). Ovicidal and toxic effects of certain plant extracts to the castor semilooper, Achaea janata L. (Noctuidae: Lepidoptera) . Indian Journal of Agricultural Research. 51(4): 345-349. doi: 10.18805/ijare.v51i04.8420.

Ovicidal and toxic effects of crude leaf extracts of Clerodendrum inerme, Clerodendrum splendens, Clerodendrum multiflorum, Vitex negundo and Argemone mexicana were evaluated against the castor semilooper, Achaea janata L. (Noctuidae: Lepidoptera) using different bioassay methods. Among the extracts tested, the highest ovicidal activity was observed in C. splendens as well as A. mexicana with LD50 values of 7.65 and 9.14 mg-1, respectively. Leaf extracts of A. mexicana and C. inerme were toxic to both third and fourth instar larvae of A. janata through topical application. However, the extracts of A. mexicana and C. inerme found to be more toxic to third instar larvae with 70 and 73 per cent mortality, respectively. The lowest LD50 value of 5.33 mg-1 was recorded by A. mexicana extract and was followed by C. inerme extract with LD50 value of 7.26 mg-1. Present results indicated that A. mexicana and C. inerme plants have potential to use in IPM programme.


  1. Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18: 266-267.

  2. Akhtar, Y. and Isman, M. B. (2004). Comparative growth inhibitory and antifeedant effects of plant extracts and pure allelochemicals on four phytophagous insect species. J. Appl. Entomol., 128: 32-38.

  3. Akhtar, Y., Isman, M. B., Niehaus, L. A., Lee, C. H and Lee, H. S. (2012). Antifeedant and toxic effects of naturally occurring and synthetic quinines to the cabbage lopper, Trichoplusia ni. Crop Prot., 31: 8-14.

  4. Arshad, A., Parvez, Q. R. and Farmanur, R. K. (2010). Bio-efficacy of some plant leaf extracts against mustard aphid, Lipaphis erysimi Kalt. on Indian mustard, Brassica juncea, J. Plant Prot., 50: 130-132.

  5. Dhingra, S. (1998). Susceptibility status of castor semilooper, Achaea janata Linn. to pyrethroids and non-pyrethroids insecticides. J. Entomolo. Res., 22: 43-47. 

  6. Finney, D. J. (1971). Probit analysis. Cambridge University Press, London: pp. 245.

  7. Ganawade, D. M., Wasu, Y. H. and Raj, I. A. (2013). Plant derived toxicants to control castor semilooper, Achaea janata, (Noctuidae: Lepidoptera). Asian J. Biol. Biotech., 2: 1-8.

  8. Isman, M. B. (1995). Leads and Prospects for the development of new botanical insecticides. In: Reviews in Pesticide Toxicology (Roe, R. M. and Khur, R. J. eds.), Vol.3. Toxicology Communications Inc., Raleigh, NC. pp. 1-20.

  9. Jacobson, M. (1989). Botanical insecticides: past, present and future. In: Insecticides of Plant Origin. American Chemical Society (Arnason, J. T., Philogène B. J. R. and Morand P. eds.), Symposium Series No. 387, Washington, D. C. pp. 1-10.

  10. Jadhav, G. S., Devarshi, A. A. and Yankanchi, S. R. (2016). Efficacy of certain Clerodendrum leaf crude extracts against cutworm, Spodoptera litura Fab and cotton bollworm, Helicoverpa armigera Hub. J. of Entomol. and Zool. Stud., 4: 466-472. 

  11. Javaregowda, N. and Naik, L. K. (2007). Ovicidal properties of plant extracts against the eggs of teak defoliator, Hyblaea puera Cramer. Karnataka J. Agricult. Sci., 20: 291-293.

  12. Koul, O., Kaur, H., Goomber, S. and Wahab, S. (2004). Bioefficacy and mode of action of rocaglamide from Aglaia elaeagnoidea (syn. A. roxburghiana) against gram pod borer, Helicoverpa armigera (Hubner) J. Appl. Entomol., 128: 177-181.

  13. Malarvannan, S., Giridharan, R., Sekar S., Prabavathy, V. R. and Nair, S. (2008). Bioefficacy of crude and fractions of Argemone mexicana against tobacco caterpillar, Spodoptera litura (F.) (Noctuidae: Lepidoptera). J. Biopest., 1: 55-62. 

  14. Malarvannan, S., Senthil Kumar, S., Giridharan, R. and Nair, S. (2008a) Bioefficacy of Argemone mexicana against American bollworm, Helicoverpa armigera (Hubner), (Noctuidae: Lepidoptera). Hexapoda., 15: 49- 55.

  15. Morgan, E. D. (2009). Azadirachtin, a scientific gold mine. Bioorg. Med. Chem., 17: 4096-4105. 

  16. Pandey, R., Verma, R. K. and Gupta, M. M. (2005). Neo-clerodane diterpenoids from Clerodendrum inerme. Phytochemistry., 66: 643-648.

  17. Patil, P. B., Holihosur, S. N. and Kallapur, V. L. (2006). Efficacy of natural product, Clerodendron inerme against mosquito vector Aedes aegypti. Curr. Sci., 90: 1064-1066.

  18. Pavela, R., Sajfrtova, M., Sovova, H. and Barnet, M. (2008). The insecticidal activity of Satureja hortensis L. extracts obtained by supercritical fluid extraction and traditional extraction techniques. App. Entomol. Zool., 43: 377-382. 

  19. Pereira, J. and Gurudutt, K.N. (1990). Growth inhibition of Musca domestica L. and Culex quinquefasciatus (Say) by (levo)-3-    epicaryoptin isolated from leaves of Clerodendron inerme (Gaertn) (Verbenaceae). J. Chem. Ecol., 16: 2297-2306. 

  20. Pimental, D. (1994). Insect population responses to environmental stress and pollutants. Environ. Rev., 2: 1-15. 

  21. Radhika, W. and Sarita, K. (2014). Oviposition altering and ovicidal efficacy of root extracts of Argemone mexicana against dengue vector, Aedes aegypti (Diptera: Culicidae). J. of Entomol. and Zool. Stud., 2: 11-17. ý

  22. Radhika, W. and Sarita K. (2013). Impact of Argemone mexicana extracts on the cidal, morphological, and behavioral response of dengue vector, Aedes aegypti L. (Diptera: Culicidae) Parasitol. Res., 112: 3477–3484.

  23. Sharma, C. T. Patil, G. P. Sharma, N. S. and Zambare, S. P. (2016). Effect of Argemone mexicana leaves extract at different solvents on gut of Heliothis armigera (Hub). Int. J. Life. Sci. Scienti. Res., 2: 293-296. 

  24. Shrivastava, N. and Patel, T. (2007). Clerodendrum and Heathcare: An overview. Med. Aromat Plant Sci. Biotechnol., 1: 142-150. 

  25. Suthar, M. D. and Bharpoda, T. M. (2016). Evaluation of botanicals against Callosobruchus chinensis Linnaeus in black gram under storage condition. Indian J. Agri. Res., 50: 167-171. 

  26. Yadwad, V. B. and Kallapur, V. L. (1988). Induction of glutathione S-transferase in the castor semilooper, Achaea janata (Lepidoptera: Noctuidae) following fenitrothion treatment. J. Biosci., 13: 139-146. 

  27. Yankanchi, S. R. (2009). Efficacy of different solvents extract of Clerodendron inerme Gaertn. against larvae of castor semilooper, Achaea janata L. Uttar Pradesh J. Zool., 29: 299-303.

  28. Yankanchi, S. R. and Patil, S. R. (2009). Field efficacy of plant extracts on larval populations of Plutella xylostella L. and Helicoverpa armigera Hub. and their impact on cabbage infestation. J. Biopest., 2: 32-36.

  29. Yankanchi, S. R. Kallapur, V. L. and Holihosur, S. N. (2015). In vitro and in vivo inhibition of haemolymph juvenile hormone esterase activity by ethanol extract of Clerodendrum inerme in fifth instar larva of castor semilooper, Achaea janata (L.). Curr. Sci., 108: 1516-1520. 

  30. Zeinab, S. and Abou, E. (2015). Strong larvicidal properties of Argemone mexicana L. against medically important vectors Culex pipiens and Aedes aegypti. Int. J. mosq .res., 2: 09-12.



  31.  

Editorial Board

View all (0)