Indian Journal of Agricultural Research

  • Chief EditorV. Geethalakshmi

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 53 issue 1 (february 2019) : 1-7

Endophytic bacteria and their potential application in agriculture: A review

Jannathul Firdous, Norain Ab. Lathif, Resni Mona, Noorzaid Muhamad
1Cluster for Integrative Physiology and Molecular Medicine, Faculty of Medicine, Universiti Kuala Lumpur Royal College of Medicine Perak, Jalan Greentown, 30450 Ipoh, Perak, Malaysia.
Cite article:- Firdous Jannathul, Lathif Ab. Norain, Mona Resni, Muhamad Noorzaid (2019). Endophytic bacteria and their potential application in agriculture: A review. Indian Journal of Agricultural Research. 53(1): 1-7. doi: 10.18805/IJARe.A-366.
Evolution and biodiversity of plants may depend on their mutual relationship with soil microbes. Endophytes are such microbes that grow within the plants and can be isolated from leaves, stem, roots, seeds, fruits and flowers. This review gives information on the importance of endophytic bacteria and their role in agriculture by giving some of the products which is more beneficial in improving the agriculture and a detailed knowledge about the potential biotechnological applications of endophytic bacteria in agriculture.  
  1. Arkhipova, T. N., Veselov, S. U., Melentiev, A. I., Martynenko, E. V. and Kudoyarova, G. R. (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil,272: 201-209.
  2. Arnold, A. E. (2007). Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biology Reviews,21: 51-66.
  3. Azcón, R. and Barea, J. M. (1975). Synthesis of auxins, gibberellins and cytokinins byAzotobacter vinelandii andAzotobacter beijerinckii related to effects produced on tomato plants. Plant and Soil,43: 609-619.
  4. Bacilio, M., Rodriguez, H., Moreno, M., Hernandez, J.-P. and Bashan, Y. (2004). Mitigation of salt stress in wheat seedlings by a gfp-    tagged Azospirillum lipoferum. Biology and Fertility of Soil,40: 188-193.
  5. Bacon, C. W. and White, J. (2000).Microbial Endophytes. Books in Soils, Plants, and the Environment: Taylor & Francis.
  6. Baltruschat, H., Fodor, J., Harrach, B. D., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A., Kogel, K. H., Schafer, P., Schwarczinger, I., Zuccaro, A. and Skoczowski, A. (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol,180: 501-510.
  7. Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J. V., Vangronsveld, J. and van der Lelie, D. (2004). Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol,22: 583-588.
  8. Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances,16: 729-770.
  9. Beattie, G. (2006). Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances’, In Plant-Associated Bacteria: [Gnanamanickam, S. (ed.)] Springer Netherlands. 1-56.
  10. Bhattacharyya, P. N. and Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture.World J Microbiol Biotechnol,28: 1327-1350.
  11. Bhore, S. J., Ravichantar, N. and Loh, C. Y. (2010). Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds.Bioinformation,5: 191-197.
  12. Bianco C, Defez R 2009. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot, 60: 3097–3107
  13. Blaha, D., Prigent-Combaret, C., Mirza, M. S. and Moenne-Loccoz, Y. (2006). Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography.    FEMS Microbiol Ecol,56: 455-70.
  14. Botta, A. L., Santacecilia, A., Ercole, C., Cacchio, P. and Del Gallo, M. (2013). In vitro and in vivo inoculation of four endophytic bacteria on Lycopersicon esculentum.N Biotechnol, 30: 666-674
  15. Bottini, R., Cassan, F. and Piccoli, P. (2004). Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol,65: 497-503.
  16. Buschart, A., Sachs, S., Chen, X., Herglotz, J., Krause, A. and Reinhold-Hurek, B. (2012). Flagella mediate endophytic competence rather than act as MAMPS in rice-Azoarcus sp. strain BH72 interactions.Mol Plant Microbe Interact,25: 191-199.
  17. Carvalhais, L. C., Dennis, P. G., Badri, D. V., Tyson, G. W., Vivanco, J. M. and Schenk, P. M. (2013) Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities.PLoS One,8: e56457.
  18. Chamam, A., Sanguin, H., Bellvert, F., Meiffren, G., Comte, G., Wisniewski-Dye, F., Bertrand, C. and Prigent-Combaret, C. (2013). Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry,    87: 65-77.
  19. Chang, C., Damiani, I., Puppo, A. and Frendo, P. (2009). Redox changes during the legume-rhizobium symbiosis. Mol Plant,2: 370-377.
  20. Cocking, E. C., Stone, P. J. and Davey, M. R. (2005). Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.Sci China C Life Sci,48: 888-896.
  21. Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol,71: 4951-4959.
  22. Desbrosses, G. J. and Stougaard, J. (2011). Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe,10: 348-358.
  23. Dobbelaere, S. and Okon, Y. (2007). The Plant Growth-Promoting Effect and Plant Responses, In: Associative and Endophytic Nitrogen-    fixing Bacteria and Cyanobacterial Associations Nitrogen Fixation: Origins, Applications, and Research Progress: [Elmerich, C. & Newton, W. (eds.)]
  24. Doty, S., Oakley, B., Xin, G., Kang, J., Singleton, G., Khan, Z., Vajzovic, A. and Staley, J. (2009). Diazotrophic endophytes of native black cottonwood and willow. Symbiosis, 47: 23-33.
  25. Dudeja, S. S., Giri, R., Saini, R., Suneja-Madan, P. and Kothe, E. (2012). Interaction of endophytic microbes with legumes. J Basic Microbiol,52: 248-260.
  26. Dulla, G. F., Go, R. A., Stahl, D. A. and Davidson, S. K. (2012). Verminephrobacter eiseniae type IV pili and flagella are required to colonize earthworm nephridia. Isme j, 6: 1166-1175.
  27. Gaiero, J. R., McCall, C. A., Thompson, K. A., Day, N. J., Best, A. S. and Dunfield, K. E. (2013). Inside the root microbiome: Bacterial root endophytes and plant growth promotion.American Journal of Botany,100: 1738-1750.
  28. Garcia de Salamone, I. E., Hynes, R. K. and Nelson, L. M. (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol,47: 404-411.
  29. Germaine, K. J., Keogh, E., Ryan, D. and Dowling, D. N. (2009). Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett, 296: 226-234.
  30. Glick, B., Cheng, Z., Czarny, J. and Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria.European Journal of Plant Pathology,119: 329-339.
  31. Haas, D. and Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads.Nat Rev Microbiol,3: 307-319.
  32. Hamdia, M. A.-S., Shaddad, M. A. K. and Doaa, M. M. (2004). Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regulation,44: 165-174.
  33. Hardoim, P. R., van Overbeek, L. S. and Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol,16: 463-471.
  34. Hayat, R., Ali, S., Amara, U., Khalid, R. and Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology,60:579-598.
  35. Heil, M. and Bostock, R. M. (2002). Induced systemic resistance (ISR) against pathogens in the context of induced plant defences.Ann Bot, 89: 503-512.
  36. Hematy, K., Cherk, C. and Somerville, S. (2009). Host-pathogen warfare at the plant cell wall.Curr Opin Plant Biol,12: 406-413.
  37. Hilbert, M., Voll, L. M., Ding, Y., Hofmann, J., Sharma, M. and Zuccaro, A. (2012). Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots.New Phytologist,196: 520-534.
  38. Johnston-Monje, D. and Raizada, M. N. (2011). Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology. PLoS ONE,6: e20396.
  39. Jung, H. W., Kim, W. and Hwang, B. K. (2003). Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant Cell Environ,26: 915-928.
  40. Kang, S. H., Cho, H. S., Cheong, H., Ryu, C. M., Kim, J. F. and Park, S. H. (2007). Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.).J Microbiol Biotechnol,17: 96-103.
  41. Kannan, R., Damodaran, T., Nagaraja, A., and Umamaheswari, S (2018). Salt tolerant polyembryonic mango rootstock (ML-2 and GPL-1): A putative role of endophytic bacteria by using BOX-PCR. Indian J. Agric. Res., 52: 419-423.
  42. Khan, A. L., Hamayun, M., Kim, Y.-H., Kang, S.-M., Lee, J.-H. and Lee, I.-J. (2011). Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress.Process Biochemistry,46: 440-447.
  43. Khan, Z. and Doty, S. (2011). Endophyte assisted phytoremediation.Current Topics in plant Biology,12: 97-105.
  44. Kusari, S., Hertweck, C. and Spiteller, M. (2012). Chemical ecology of endophytic fungi: origins of secondary metabolites.Chem Biol,19: 792-798.
  45. Lange, T., Kappler, J., Fischer, A., Frisse, A., Padeffke, T., Schmidtke, S. and Lange, M. J. (2005). Gibberellin biosynthesis in developing pumpkin seedlings.Plant Physiol,139: 213-223.
  46. Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria.European Journal of Plant Pathology,119: 243-254.
  47. Lugtenberg, B. and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria.Annu Rev Microbiol,63: 541-556.
  48. Luo, Z. B., Janz, D., Jiang, X., Gobel, C., Wildhagen, H., Tan, Y., Rennenberg, H., Feussner, I. and Polle, A. (2009). Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation.Plant Physiol,151: 1902-1917.
  49. Malinowski, D. P., Belesky, D. P. and Lewis, G. C. (2005). Abiotic Stresses in Endophytic Grasses.Neotyphodium in Cool-Season Grasses: Blackwell Publishing Ltd. 187-199.
  50. Mano, H. and Morisaki, H. (2008). Endophytic bacteria in the rice plant.Microbes Environ,23: 109-117.
  51. Martínez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G. and Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria.Journal of Soil Science and Plant Nutrition,10: 293-319.
  52. Mastretta, C., Taghavi, S., Lelie, D. v. d., Mengoni, A., Galardi, F., Gonnelli, C., Barac, T., Boulet, J., Weyens, N. and Vangronsveld, J. (2009). Endophytic bacteria from seeds of nicotiana tabacum can reduce cadmium phytotoxicity.International Journal of Phytoremediation,11: 251-267.
  53. Mayak, S., Tirosh, T. and Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress.Plant Physiol Biochem,42: 565-572.
  54. Morse, L. J., Day, T. A. and Faeth, S. H. (2002). Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environmental and Experimental Botany,48:257-268.
  55. Newman, L. A. and Reynolds, C. M. (2005). Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends in Biotechnology,23: 6-8.
  56. Pedraza, R. O., Motok, J., Tortora, M. L., Salazar, S. M. and Díaz-Ricci, J. C. (2007). Natural occurrence of Azospirillum brasilense in strawberry plants. Plant and Soil,295: 169-178.
  57. Pineros, M. A., Magalhaes, J. V., Carvalho Alves, V. M. and Kochian, L. V. (2002). The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol,129: 1194-1206.
  58. Preston, G. M. (2007). Metropolitan Microbes: Type III Secretion in Multihost Symbionts.Cell Host & Microbe,2: 291-294.
  59. Ramachandran, K., Srinivasan, V., Hamza, S. and Anandaraj, M. (2007). Phosphate solubilizing bacteria isolated from the rhizosphere soil and its growth promotion on black pepper (Piper nigrum L.) cuttings In: First International Meeting on Microbial Phosphate Solubilization Developments in Plant and Soil Sciences: [Velázquez, E. & Rodríguez-Barrueco, C. (eds.)] Springer Netherlands. 325-331.
  60. Reinhold-Hurek, B., Maes, T., Gemmer, S., Van Montagu, M. and Hurek, T. (2006). An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72', Mol Plant Microbe Interact,19: 181-188.
  61. Rodrýìguez, H. and Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion’, Biotechnology Advances,17: 319-339.
  62. Rosenblueth, M. and Martinez-Romero, E. (2004). Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol, 181: 337-344.
  63. Rosenblueth, M. and Martinez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts’, Mol Plant Microbe Interact,19: 827-837.
  64. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis.Plant Physiol,134: 1017-1026.
  65. Saleem, M., Arshad, M., Hussain, S. and Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture.J Ind Microbiol Biotechnol,34: 635-648.
  66. Santi, C., Bogusz, D. and Franche, C. (2013). Biological nitrogen fixation in non-legume plants. Annals of Botany.111: 743-767.
  67. Sarbadhikary, S. B., Mandal, N.C. (2018). Elevation of plant growth parameters in two solanaceous crops with the application of endophytic fungus. Indian J. Agric. Res., 52: 424-428.
  68. Sgroy, V., Cassán, F., Masciarelli, O., Papa, M., Lagares, A. and Luna, V. (2009). Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology,85: 371-381.
  69. Sharma, A. and Johri, B. N. (2003). Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res,158: 243-248.
  70. Siddiqui, Z. A. (2006).PGPR: Biocontrol and Biofertilization: Biocontrol and Biofertilization. SpringerLink: Springer e-Books: Springer.
  71. Spaepen, S., Vanderleyden, J. and Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev, 31: 425-448.
  72. Steenhoudt, O. and Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev,24: 487-506.
  73. Strader, L. C., Chen, G. L. and Bartel, B. (2010). Ethylene directs auxin to control root cell expansion. Plant J,64: 874-884.
  74. Strobel, G., Daisy, B., Castillo, U. and Harper, J. (2004). Natural products from endophytic microorganisms.J Nat Prod,67: 257-268.
  75. Surette, M., Sturz, A., Lada, R. and Nowak, J. (2003). Bacterial endophytes in processing carrots (Daucus carota L. var. Sativus): their localization, population density, biodiversity and their effects on plant growth.Plant and Soil,253: 381-390.
  76. Taechowisan, T., Lu, C., Shen, Y. and Lumyong, S. (2005). Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity.Microbiology,151: 1691-1695.
  77. Theocharis, A., Bordiec, S., Fernandez, O., Paquis, S., Dhondt-Cordelier, S., Baillieul, F., Clement, C. and Barka, E. A. (2012). Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant Microbe Interact, 25: 241-249.
  78. Thrall, P. H., Hochberg, M. E., Burdon, J. J. and Bever, J. D. (2007). Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol,22: 120-126.
  79. Vadassery, J. and Oelmüller, R. (2009). Calcium signaling in pathogenic and beneficial plant microbe interactions: what can we learn from the interaction between Piriformospora indica and Arabidopsis thaliana. Plant Signal Behav,4: 1024-1027.
  80. Van Wees, S. C., Van der Ent, S. and Pieterse, C. M. (2008). Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol, 11:443-448.
  81. Vanstraelen, M. and Benkova, E. (2012). Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol,28: 463-487.
  82. Weingart, H., Ullrich, H., Geider, K. and Volksch, B. (2001). The role of ethylene production in virulence of pseudomonas syringae pvs. glycinea and phaseolicola.Phytopathology,91: 511-518.
  83. Weyens, N., van der Lelie, D., Artois, T., Smeets, K., Taghavi, S., Newman, L., Carleer, R. and Vangronsveld, J. (2009). Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol,43: 9413-9418.
  84. Wittenmayer, L. and Merbach, W. (2005). Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes. Journal of Plant Nutrition and Soil Science,168: 531-540.
  85. Woodward, A. W. and Bartel, B. (2005). Auxin: regulation, action, and interaction. Ann Bot,95: 707-735.
  86. Yang, J., Kloepper, J. W. and Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci,14: 1-4.
  87. Yanni, Y., Rizk, R. Y., Corich, V., Squartini, A., Ninke, K., Philip-Hollingsworth, S., Orgambide, G., et al (1997). Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant and Soil,194: 99-114.
  88. Zawoznik, M., Ameneiros, M., Benavides, M., Vázquez, S. and Groppa, M. (2011). Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings.Applied Microbiology and Biotechnology,90: 1389-1397.
  89. Zhu, F., Qu, L., Hong, X. and Sun, X. (2011). Isolation and Characterization of a Phosphate-Solubilizing Halophilic Bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China. Evid Based Complement Alternat Med,615032. 

Editorial Board

View all (0)