Loading...

Efficacy of Organic Biostimulant (Fish Protein Hydrolyzate) on the Growth and Yield of Tomato (Solanum lycopersicum)

DOI: 10.18805/ag.D-5309    | Article Id: D-5309 | Page : 20-25
Citation :- Efficacy of Organic Biostimulant (Fish Protein Hydrolyzate) on the Growth and Yield of Tomato (Solanum lycopersicum).Agricultural Science Digest.2022.(42):20-25
Sheetal P. Dewang, Usha Devi C. sheetudewang@gmail.com
Address : Department of Food and Nutrition Research Centre, SMT. VHD Central Institute of Home Science, Bangalore University, Sheshadri Road, Bangalore-560 001, Karnataka, India.
Submitted Date : 9-02-2021
Accepted Date : 28-04-2021

Abstract

Background: Organic agricultural inputs are getting immense importance for enhancing growth, yield and nutritional value of the crop. The aim of this experiment was to evaluate the effect of soil application of different doses of fish protein hydrolysates (FPH) on the growth parameters of the tomato (Solanum lycopersicum) plant. 
Methods: FPH treatment were applied through soil application in three different doses such as 0.5 mL, 2.0 mL and 5.0 mL diluted into 2 liters of water and one control group was maintained that did not receive any FPH but only equal amount of water. The growth parameters in terms of fruit yield, shoot morphology and root morphology were studied. The 0.5 ml dose resulted in the 48% increase in the yield to tomatoes. The dose proportional linear increase in the tomato yield was not observed. All the doses of FPH showed increase in the fresh shoot weight as compared to control, however differentiation with different doses was not profound. 
Result: The optimal dose of 0.5 ml showed significantly positive effect on the root morphology. However, the highest dose of 5.0 ml resulted in the negative effect on the root development. This research work demonstrated that optimal dose of the organic biostimulant FPH can help to increase the yield of tomato.

Keywords

Biostimulant Fish protein hydrolysate Growth Tomato Yield

References

  1. Calvo, P., Nelson, L., Kloepper, J.W. (2014). Agricultural uses of plant biostimulants. Plant Soil. 83: 3-41.
  2. Carillo, P., Colla, G., Fusco, G.M., Dell, Aversana, E., El-Nakhel, C., Giordano, M., Pannico, A., Cozzolino, E., Mori, M., Reynaud, H., Kyriacou, M.C., Cardarelli, M., Rouphael, Y. (2019). Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy. 9: 1-22.
  3. Caruso, G., De Pascale, S., Cozzolino, E., Giordano, M., El-Nakhel, C., Cuciniello, A., Cenvinzo, V., Colla, G., Rouphael, Y. (2019). Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants. 8: 1-18.
  4. Casadesús, A., Polo, J., Munné-Bosch, S. (2019). Hormonal effects of an enzymatically hydrolyzed animal protein-based biostimulant (pepton) in water-stressed tomato plants. Front. Plant Sci. 10: 1-11.
  5. Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 5: 1-6.
  6. Colla, G., Svecova, E., Rouphael, Y., Cardarelli, M., Reynaud, H. R., Canaguier, Planques, B. (2012). Effectiveness of a plant-derived protein Hydrolysate to improve crop perfor-mances under different growing conditions. Acta Hortic. 1009: 175-180.
  7. Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. (Amsterdam). 196: 28-38.
  8. Colla, G., Rouphael, Y., Lucini, L., Canaguier, R., Stefanoni, W., Fiorillo, A., Cardarelli, M. (2016). Protein hydrolysate-based biostimulants: Origin, biological activity and application methods. Acta Hortic. 1148: 27-34.
  9. Ertani, A., Cavani, L., Pizzeghello, D., Brandellero, E., Altissimo, A., Ciavatta, C., Nardi, S. (2009). Biostimulant activity of two protein hydrolyzates in the growth and nitrogen meta-bolism of maize seedlings. J. Plant Nutr. Soil Sci. 172: 237-244.
  10. Genç, E., Atici, Ö. (2019). Chicken feather protein hydrolysate as a biostimulant improves the growth of wheat seedlings by affecting biochemical and physiological parameters. Turk. J. Botany. 43: 67–79.
  11. Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., Yermiyahu, U. (2015). The Use of Biostimulants for Enhancing Nutrient Uptake. Elsevier Inc. 141-174 pp.
  12. Hernández-Herrera, R.M., Santacruz-Ruvalcaba, F., Ruiz-López, M.A., Norrie, J., Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 26: 619-628.
  13. Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. (Amsterdam). 196: 3-14.
  14. Kavipriya, R., Boominathan, P. (2018). Influence of Biostimulants and Plant Growth Regulators onPhysiological and Bio-chemical Traits in Tomato (Lycopersicon esculentum Mill.). Madras Agric. J. 105: 225.
  15. Khalid, A., Arshad, M., Zahir. Z.A. (2004). Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96: 473-480.
  16. Li, Y., Wang, H., Zhang, Y., Martin, C., Martin, C. (2018). Can the world ’ s favorite fruit , tomato , provide an effective biosynthetic chassis for high-value metabolites/ ? Plant Cell Rep. 37: 1443-1450.
  17. Lucini, L., Rouphael, Y., Cardarelli, M., Canaguier, R., Kumar, P., Colla, G. (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. (Amsterdam). 182: 124-133.
  18. Martí, R., Roselló, S., Cebolla-cornejo, J. (2016). Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. 1-28.
  19. Matsumiya, Y., Kubo, M. (2011). Soybean Peptide: Novel Plant Growth Promoting Peptide from Soybean. Soybean Nutr.
  20. Nardi, S., Pizzeghello, D., Schiavon, M., Ertani, A. (2016). Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 73: 18-23.
  21. Nations, U. (2019). World Population Prospects (2019). 1-39 pp.
  22. Nurdiawati, A., Suherman, C., Maxiselly, Y., Akbar, M.A., Purwoko, B.A., Prawisudha, P., Yoshikawa, K. (2019). Liquid feather protein hydrolysate as a potential fertilizer to increase growth and yield of patchouli (Pogostemon cablin Benth) and mung bean (Vigna radiata). Int. J. Recycl. Org. Waste Agric. 8: 221-232.
  23. Parađiković, N., T. Teklić, S. Zeljković, M. Lisjak, M. Špoljarević. (2019). Biostimulants research in some horticultural plant species-A review. Food Energy Secur. 8: 1-17.
  24. Parant, A. (1990). [World population prospects]. Futuribles 49-78.
  25. Pohl, A., Grabowska, A., Kalisz, A., Sekara, A. (2019). The eggplant yield and fruit composition as affected by genetic factor and biostimulant application. Not. Bot. Horti Agrobot. Cluj-Napoca 47: 929-938.
  26. Povero, G., Mejia, J.F., Di Tommaso, D., Piaggesi, A., Warrior, P. (2016). A systematic approach to discover and characterize natural plant biostimulants. Front. Plant Sci. 7: 1-9.
  27. Quartieri, M., Lucchi, A., Marangoni, B., Tagliavini, M., Cavani, L. (2002). Effects of the rate of protein hydrolysis and spray concentration on growth of potted kiwifruit (Actinidia deliciosa) plants. Acta Hortic. 594: 341-347.
  28. Raiola, A., Rigano, M.M., Calafiore, R., Frusciante, L., Barone, A. (2014). Enhancing the Health-Promoting Effects of Tomato Fruit for Biofortified Food. 2014.
  29. Rattanapon, R., Siripongvutikorn, S., Usawakesmanee, W. (2016). Improvement of nutritional value and bioactivity of ricegrass as affected of priming induced by fish protein hydrolysate. 6: 219-233.
  30. Ronga, D., Caradonia, F., Setti, L., Hagassou, D., Giaretta Azevedo, C.V., Milc, J., Pedrazzi, S., Allesina, G., Arru, L., Francia, E. (2019). Effects of innovative biofertilizers on yield of processing tomato cultivated in organic cropping systems in northern Italy. Acta Hortic. 1233: 129-135.
  31. Rouphael, Y., Colla, G., Giordano, M., El-Nakhel, C., Kyriacou, M.C., De Pascale, S. (2017). Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. (Amsterdam). 226: 353-360.
  32. Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Matteazzi, A., Andreotti. C. (2019). Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy 9: 1-22.
  33. Stasio, Di. E., Van Oosten, M.J., Silletti, S., Raimondi, G., dell’Aversana, E., Carillo, P., Maggio, A. (2018). Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. J. Appl. Phycol. 30: 2675-2686.
  34. Wozniak, E., Blaszczak, A., Wiatrak, P., Canady. M. (2020). Biostimulant Mode of Action. Chem. Biol. Plant Biostimulants 229-243.
  35. Xu, C., Mou. B. (2017). Drench Application of Fish-derived Protein Hydrolysates Affects Lettuce Growth, Chlorophyll Content, and Gas Exchange. 000.
  36. Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., Brown, P.H. (2017). Biostimulants in plant science: A global perspective. Front. Plant Sci. 7.
  37. Yasmeen, A., Nouman, W., Basra, S.M.A., Wahid, A., Hafeez-ur-Rehman, Hussain, N., Afzal, I. (2014). Morphological and physiological response of tomato (Solanum lycopersicum L.) to natural and synthetic cytokinin sources: a comparative study. Acta Physiol. Plant. 36: 3147-3155.
  38. Zodape, S.T., Gupta, A., Bhandari, S.C., Rawat, U.S., Chaudhary, D.R., Eswaran, K., Chikara, J. (2011). Foliar Application of Seaweed Sap as Biostimulant for Enhancement of Yield and Quality of Tomato (Lycopersicon Esculentum Mill.). 215-219 pp.
  39. FAO. (2019). Tomato Crops Production, retrieved on Aug 31, 2020 from: http://www.fao.org/faostat/en/#search/TOMATO].

Global Footprints