Published In
Agricultural Science Digest
Article Metrics

0
Views
0
Citations
Reviewed By
In this Article
APC
APC cover the cost of turning a manuscript into a published manuscript through peer-review process, editorial work as well as the cost of hosting, distributing, indexing and promoting the manuscript.
Publish With US
Submit your manuscript through user friendly platform and acquire the maximum impact for your research by publishing with ARCC Journals.
Become a Reviewer/Member
Join our esteemed reviewers panel and become an editorial board member with international experts in the domain of numerous specializations.
Open Access
Filling the gap between research and communication ARCC provide Open Access of all journals which empower research community in all the ways which is accessible to all.
Products and Services
We provide prime quality of services to assist you select right product of your requirement.
Support and Policies
Finest policies are designed to ensure world class support to our authors, members and readers. Our efficient team provides best possible support for you.
Follow us
Research Article
volume 41 special issue (april 2021) : 247-251, Doi: 10.18805/ag.D-5156
Toxic Impact of Zinc Salt (ZnSO4) on Some Haematological Parameters in a Freshwater Mud Eel Amphipnous cuchia (Hamilton, 1822)
1Department of Zoology, Magadh Mahila College, Patna University, Patna-800 005, Bihar, India.
Submitted19-02-2020|
Accepted08-07-2020|
First Online 10-11-2020|
Cite article:- Sinha Renu Mridula, Kumari Sapna (2020). Toxic Impact of Zinc Salt (ZnSO4) on Some Haematological Parameters in a Freshwater Mud Eel Amphipnous cuchia (Hamilton, 1822). Agricultural Science Digest. 41(2021): 247-251. doi: 10.18805/ag.D-5156.
ABSTRACT
Background: Zinc (Zn), a heavy metal present in aquatic environment, has toxic effect on fishes. Present study was to assess toxicity of Zinc salt (ZnSO4) on total erythrocyte count (TEC), haemoglobin (Hb) content (g/dl) and haematocrit value (PCV%) of blood of freshwater mud eel Amphipnous cuchia.
Methods: Live fishes collected from ponds were acclimatized in laboratory. TEC, Hb content and PCV% of blood samples collected after 15, 30, 60 and 90 days, of control fishes and fishes exposed to low (0.5mg/l) and high (1mg/l) concentrations of ZnSO4, were determined by standard methods.
Result: TEC, Hb content and PCV% varied respectively from 2.48 x 106/mm3 to 2.70 x 106/mm3, 12.02 g/dl to 12.30 g/dl and 28.50 % to 33.60 % in fishes in low and from 2.36 x 106/mm3 to 2.60 x 106/mm3, 11.82 g/dl to 12.20 g/dl and 26.20 % to 31.50 % in fishes in high concentration of ZnSO4 solution, showing decreasing trend in all three blood parameters vis-a-vis their control values viz. TEC (2.74 x 106/mm3), Hb content (12.60 g/dl) and PCV% (34.50 %), decrease being more prominent in fishes exposed to high than those to low concentration. The depletion in these blood parameters may be attributed to the haemotoxic characteristics of Zinc (Zn).
Methods: Live fishes collected from ponds were acclimatized in laboratory. TEC, Hb content and PCV% of blood samples collected after 15, 30, 60 and 90 days, of control fishes and fishes exposed to low (0.5mg/l) and high (1mg/l) concentrations of ZnSO4, were determined by standard methods.
Result: TEC, Hb content and PCV% varied respectively from 2.48 x 106/mm3 to 2.70 x 106/mm3, 12.02 g/dl to 12.30 g/dl and 28.50 % to 33.60 % in fishes in low and from 2.36 x 106/mm3 to 2.60 x 106/mm3, 11.82 g/dl to 12.20 g/dl and 26.20 % to 31.50 % in fishes in high concentration of ZnSO4 solution, showing decreasing trend in all three blood parameters vis-a-vis their control values viz. TEC (2.74 x 106/mm3), Hb content (12.60 g/dl) and PCV% (34.50 %), decrease being more prominent in fishes exposed to high than those to low concentration. The depletion in these blood parameters may be attributed to the haemotoxic characteristics of Zinc (Zn).
REFERENCES
- Afifi, M., Zinada, O.A.A., Ali, H. and Michel, C. (2016). Zinc nanoparticles induced brain lesions and behavioral changes in Tilapia nilotica and Tilapia. zillii. Indian J. Anim. Res. 50(5): 764-768.
- Afshan, S., Ali, S., Ameen, U.S., Farid, M., Bharwana, S.A., Hannan, F. and Ahmad, R. (2014). Effect of Different Heavy Metal Pollution on Fish. Res. J. Chem. Env. Sci. 2 (1): 74-79.
- APHA (2005). Standard methods for the examination of water and waste water. 17th ed., American Public Health Association, Washington.
- Authman, Mohammad, M.N., Zaki, Mona, S., Khallaf, Elsayed, A. and Abbas, Hossam, H. (2015). Use of Fish as Bio-indicator of the Effects of Heavy Metals Pollution. J Aquac Res Development. 6(4): 1-13.
- Ayotunde, E.O., Offem, B.O. and Ada, F.B. (2011). Heavy metal profile of Cross river: Cross River State, Nigeria: using bioindicators. Indian J. Anim. Res. 45 (4): 232-246.
- Bawuro, A.A., Voegborlo, R.B. and Adimado, A.A. (2018). Bioaccumulation of Heavy Metals in Some Tissues of Fish in Lake Geriyo, Adamawa State, Nigeria. Journal of Environmental and Public Health. 1: 1-7. DOI: 10.1155/2018/1854892.
- Chidiebere, Edeh Emmanuel (2019). Acute Toxicity of Copper and Zinc and their Lethal Concentration on Clarias gariepinus (Cat Fish). Biomedical Journal of Scientific and Technical Research. 17(5): 13160-13166.
- Dacie, J.V. and Lewis, S.M. (2006). Practical Haematology. 10th Edn., Churchil Livingstone, Edinburg.
- Damien, C., Chantal, V.H., Pirouz, S., Zerimech, F.H., Laurence, J. and Jean, M. H. (2004). Cellular impact of metal trace elements in terricolous lichen Diploschistes muscorum (Scop.) R. Sant.- identification of oxidative stress biomarkers. Water, Air and Soil Pollution. 152: 55-69.
- Dirican, S., Cilek, S., Ciftci, H., Biyikoglu, M., Karacinar, S. and Yokus, A. (2015). Studies on copper, silver and zinc concentrations in muscle and liver of Barbus plebejus, Cyprinus carpio and Leuciscus cephalus from Kilickaya Reservoir in Turkey. Indian J. Anim. Res. 49(1): 55-58.
- Dural, M., Goksu, M.Z.L. and Ozak, A.A. (2007). Investigation of heavy metal levels in economically important fish species captured from Tuzla lagoon. Food Chemistry. 102(1): 415-421.
- Farombi, E.O., Adelowo, O.A. and Ajimoko, Y.R. (2007). Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigerian Ogun River. Int. J. Environ. Res. Public Health. 4(2): 158-165.
- Gandhewar, S.S. and Zade S.B. (2019). Bioaccumulation of some heavy metals in the fish Clarias batrachus (Linn.). Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences. 5(2): 1083-1091.
- Gill, T.S. and Epple, A. (1993). Stress related changes in the haematological profile of the American eel (Anguilla rostrata). Ecotoxicol. Environ. Saf. 25: 227-235.
- Gorar, F.K., Kese, R., Akiel, N. and Dizman, S. (2012). Radioactivity and heavy metal concentrations of some commercial fish. Chemosphere. 187: 56-361.
- Huseen, H.M. and Mohammed, A.J. (2019). Heavy Metals Causing Toxicity in Fishes. J. Phys.: Conf. Ser. 1294 062028. DOI: 10.1088/1742-6596/1294/6/062028.
- Jezierska, B., Lugowska, K. and Witeska, M. (2009). The effects of heavy metals on embryonic development of fish (a review). Fish Physiol. Biochem. 35: 625-640.
- Kumar, M., Kumar, D. and Kumar, Rajesh (2017). Effect of heavy metals cadmium, lead and copper on the blood characteristics of fresh water catfish Clarias batrachus(Linn.). Int. J. Adv. Res. Biol. Sci. 4(1): 129-134.
- Malik, H., Sajjad, S., Akhtar, S. and Bilal, S. (2016). Effect of nickel toxicity on growth parameters and hepatic enzymes in major carp. Indian J. Anim. Res. 50(3): 370-373.
- Nagpure, N.S., Kumar, R., Kushwaha, B., Singh, P.J., Srivastava, S.K. and Lakra, W.S. (2007). Genotoxicity assessment in fishes-A practical approach. Pub. National Bureau of Fish Genetics Resources, I.C.M.R, Lucknow, India, pp. 20-21.
- Obasohan, E.E. and Eguavoen, O.I. (2008). Seasonal variations of bioaccumulation of heavy metals in a freshwater fish (Erpetoichthys calabaricus) from Ogba river, Benin City, Nigeria. Indian J. Anim. Res. 42 (3): 171-179.
- Ranbhare, V.S. and Bakare, R.V. (2012). Effect of Heavy Metal Pollution on Fresh Water Fishes. Proceeding of International Conference SWRDM-2012, Department of Environmental Science, Shivaji University, Kolhapur, pp. 170-172.
- Serezli, R., Akhan, S. and Delihasan-Sonay, Fatma (2011). Acute effects of copper and lead on some blood parameters on Coruh trout (Salmo coruhensis). African Journal of Biotechnology. 10(16): 3204-3209.
- Shalaby, A.M. (2001). Protective effect of Ascorbic acid against Mercury intoxication in Nile tilapia (Oreochromis niloticus). J. Egypt. Acad. Soc. Environ. Develop. (D- Environmental studies). 2(3): 79-97.
- Valdiglesias, V., Costa, C., Kiliç, G., Costa, S., Pasaro, E., Laffon, B. and Teixeira, J.P. (2013). Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int. 55: 92-100.
- Van der Oost, R., Beyer, J. and Vermeulen, N.P. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ. Toxicol. Pharmacol. 13(2): 57-149.
- Vinodhini, R. and Narayanan, M. (2009). The impact of toxic heavy metals on the hematological parameters in common carp (Cyprinus carpio L.). Iran. J. Environ. Health. Sci. and Eng. 6(1): 23-28.
- Vutkuru, S.S. (2005). Acute effects of Hexavalent chromium on survival, oxygen consumption, Haematological parameters and some biochemical profiles of the Indian Major Carp, Labeo rohita. Int. J. Environ. Res. Public. Health. 2: 456-462.
- Witeska, M. and Kosciuk, B., (2003). Changes in common carp blood after short-term zinc exposure. Environ. Sci. Pollut. Res. 3: 15-24.
Disclaimer :
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Copyright :
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this Article
APC
APC cover the cost of turning a manuscript into a published manuscript through peer-review process, editorial work as well as the cost of hosting, distributing, indexing and promoting the manuscript.
Publish With US
Submit your manuscript through user friendly platform and acquire the maximum impact for your research by publishing with ARCC Journals.
Become a Reviewer/Member
Join our esteemed reviewers panel and become an editorial board member with international experts in the domain of numerous specializations.
Open Access
Filling the gap between research and communication ARCC provide Open Access of all journals which empower research community in all the ways which is accessible to all.
Products and Services
We provide prime quality of services to assist you select right product of your requirement.
Support and Policies
Finest policies are designed to ensure world class support to our authors, members and readers. Our efficient team provides best possible support for you.
Follow us
Published In
Agricultural Science Digest