Loading...

AMMI model to analyse GxE for dual purpose barley in multi-environment trials

DOI: 10.18805/asd.v35i1.9303    | Article Id: D-4352 | Page : 9-16
Citation :- AMMI model to analyse GxE for dual purpose barleyin multi-environment trials .Agricultural Science Digest.2016.(36):9-16

R.P.S. Verma, A.S. Kharab, J. Singh, Vishnu Kumar, I. Sharma and Ajay Verma*

verma.dwr@gmail.com
Address :

Indian Institute of Wheat and Barley Research, Karnal 132 001, India.

Submitted Date : 18-11-2015
Accepted Date : 11-03-2016

Abstract

The highly significant effects of environments, genotypes and interactions were observed for forage and grain yield. The environmental effects explained the major portion of the total variance as of 82.3% and 58.8% respectively. Indicated that the environments were diverse and a major part of variation in yield resulted from environmental changes. The highly significant interaction effects partitioned into IPCA1, IPCA2 and IPCA3, IPCA4; which explained 30.4, 19.4, 14.8 & 13.2%  for forage and 37.0, 17.2, 16.1 and 12.5% for harvested grain yield. AMMI stability value(ASV) identified promising  genotypes G12(UPB 1035), G6(UPB 1034), G7(BH 971) and G13(RD 2857), G7 (BH 971) & G11(NDB 1570) for forage and grain respectively.  AMMI distance (D) marked G3(RD 2035) G9(BH 970) & G13(RD 2857) for former while genotypes G15(RD 2856) G11(NDB 1570) & G7(BH 971) for grain yield. GSI score advocated G13(RD 2857), G11(NDB 1570) G3(RD 2035),G5(RD 2715 ) and G7(BH 971), G2(RD 2552) G14(AZAD) desirable genotypes for selection with forage and grain yield. Genotypes with IPCA-1 scores close to zero identified G4(UPB 1036), G7(BH 971), G16(NDB 1566) and G11(NDB 1570), G2(RD 2552) for forage and yield respectively would have wider adaptation to the tested environments as per AMMI graphical plots.

Keywords

AMMI models AMMI stability value (ASV) Biplot analysis D(AMMI distance) GxE interaction Genotypic Selection Index(GSI).

References

  1. Abdipur, M. and Vaezi, B. (2014). Analysis of the genotype-by-environment interaction of winter barley tested in the Rain-fed Regions of Iran by AMMI Adjustment. Bulgarian Journal of Agricultural Science. 20: 421-427.
  2. Anandan, A., Eswaran, R., Sabesan, T. and Prakash, M. (2009). Additive main effects and multiplicative interactions analysis of yield performances in rice genotypes under coastal saline environments. Advances in Biological Research. 3: 43-47
  3. Bavandpori, F., Ahmadi, J. and Hossaini, S. (2015). Yield stability analysis of bread wheat lines using AMMI Model. Agricultural Communications. 3: 8-15.
  4. Becker, H.C. and Léon, J. (1988). Stability analysis in plant breeding. Plant Breeding. 101:1-23. 
  5. Bose, L. K., Jambhulkar, N., Pande, N. K. and Singh, O. N. (2014). Use of AMMI and other stability statistics in the simultaneous selection of rice genotypes for yield and stability under direct-seeded conditions. Chilean Journal of Agricultural Research. 74:3-9.
  6. Farshadfar, E., Mahmodi, N. and Yaghotipoor, A. (2011). AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.). Australian Journal of Crop Science. 5: 1837-1844.
  7. Kharub, A.S., Verma,R. P. S., Kumar, D., Kumar,V.,Selvakumar, R. and Sharma, I. (2013). Dual purpose barley (Hordeum vulgare L.) in India: Performance and potential. J Wheat Res. 5: 55-58.
  8. Kumar, V., Khippal, A., Singh, J., Selvakumar, R., Malik, R., Kumar, D., Kharub, A. S, Verma, R. P. S. and Sharma, I. (2014). Barley research in India: Retrospect & prospects. J Wheat Res. 6:1-20.
  9. Lin, C. S. and Binns, M. R. (1988). A superiority measure of cultivar performance for cultivar x location data. Can J Plant Sci. 68: 193-198.
  10. Mladenov, V., Banjac, B. and Miloševic, M. (2012). Evaluation of yield and seed requirements stability of bread wheat (Triticum aestivum L.) via AMMI model. Turkish Journal of Field Crops. 17: 203-207.
  11. Mohammadi, M., Karimizadeh, R., Noorinia, A.A., Ghojogh, H., Hosseinpour, T., Khalilzadeh, G.R., Mehraban, A., Roustaii, M. and Hasanpor, H. M. (2013) Analysis of yield stability in multi-environment trials of barley (Hordeum vulgar L.) genotypes using AMMI model Curr. Opin. Agric. 2: 20–24.
  12. Mohammadi, R., Mozaffar, R. M., Yousef, A., Mostafa, A. and Amri, A. (2010). Relationships of phenotypic stability measures for genotypes of three cereal crops. Can J Plant Sci. 90: 819-830.
  13. Mohammadi, R., Abdulahi,A., Haghparast, R. and Armion, M. (2007). Interpreting genotype- environment interactions for durum wheat grain yields using non-parametric methods. Euphytica. 157:239- 251.
  14. Mortazavian, S. M. M., Nikkhah, H. R., Hassani, F. A., Sharif-al-Hosseini, M., Taheri, M. and Mahlooji, M. (2014). GGE biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. Jour Agr Sci Tech. 16: 609-622.
  15. Oliveira, E. J. de, de Freitas, J. P. X. and de. Jesus, O. N. (2014). AMMI analysis of the adaptability and yield stability of yellow passion fruit varieties. Scientia Agricola. 71:139-145.
  16. Purchase, J.L., Hatting, H. and Vandeventer, C.S. (2000). Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: Stability analysis of yield performance. South African Journal of Plant and Soil. 17: 101-107.
  17. Rodriguez, M., Rau, D., Papa, R. and Attene, G. (2007). Genotype by environment interactions in barley (Hordeum vulgare L.): different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica. 163: 231-247.
  18. Silveira, L.C.I., Kist, V., Paula, T.O.M., Barbosa, M.H.P, Peternelli, L.A. and Daros, E. (2013). AMMI analysis to evaluate the adaptability and phenotypic stability of sugarcane genotypes. Scientia Agricola. 70: 27-32.
  19. Verma R.P.S., Kharub, A.S., Kumar, D., Sarkar, B., Selvakumar, R., Singh, R., Malik, R., Kumar, R. and Sharma, I. (2011). Fifty years of coordinated barley research in India. Directorate of Wheat Research, Karnal-132001. Research Bulletin No. 27: 46.
  20. VSN International. (2014). GenStat for Windows 17th Edition. VSN International, Hemel Hempstead, UK.
  21. Wricke, G. (1962). Z. Flanzenzuchlung, Uber line Method Zur Erfassung der okologischen Strechbreta in Feldersuchen.
  22. Zhang, Z., Lu, C. and Xian, Z.H. (1998). Analysis of variety stability based on AMMI model. Acta Agron Sin. 24: 304-309.

Global Footprints