Agricultural Science Digest

  • Chief EditorArvind kumar

  • Print ISSN 0253-150X

  • Online ISSN 0976-0547

  • NAAS Rating 5.52

  • SJR 0.156

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Science Digest, volume 40 issue 4 (december 2020) : 370-375

Do Phaseolus vulgaris Development Stages Influence the Total Rhizospheric Bacterial and the Phytate Utilising Community?

R.T. Maougal, M. Kechid, K. Baziz, A. Djekoun
1Laboratoire de Génétique, Biochimie et Biotechnologies Végétales (GBBV), Département de Biologie et d’Ecologie, Faculté de Biologie, Université Frères Mentouri Constantine 1, Route de Ain El Bey, 25000 Constantine, Algeria.
Cite article:- Maougal R.T., Kechid M., Baziz K., Djekoun A. (2020). Do Phaseolus vulgaris Development Stages Influence the Total Rhizospheric Bacterial and the Phytate Utilising Community?. Agricultural Science Digest. 40(4): 370-375. doi: 10.18805/ag.D-286.
Background: The occupation of soil by plants is known to induce changes in the soil chemical and physical properties by shoot decomposition and root growth and secretion. 
Methods: In this study we investigate the degree to which the total and the phytate mineralising rhizospheric communities bacteria are affected by the growth of six Recombinant Inbred Lines (RILs) of common bean (Phaseolus vulgaris). The six RILs tested were contrasted on adaptation to P (phosphorus)-deficiency from sensitive to tolerant. Rhizosphere samples were taken three times during the plant developmental stage and the changes in the density and the phytase activity of those communities relative to the P content were studied. Bacterial community was followed by culturing and measuring total community DNA of soil to allow a cultivation- independent analysis, by amplification of the 16S rRNA gene using real time PCR.
Result: Our results showed that successional moves in the rhizosphere bacterial density as plant mature confirmed that plants select their own rhizosphere community. Moves of the bacterial community in the rhizosphere were more pronounced in mature common bean and phytase enzymatic activity confirmed the ability of this plant to mobilise a functional bacterial community when the bean needs high quantities of phosphorus. This study demonstrates that common bean selects a microbial community and its density change in response to plant growth.
  1. Alkorta, I., Aizpurua, A., Riga, P., Albizu, I., Amezaga, I., Garbisu, C. (2003). Soil enzyme activities as biological indicators of soil health. Reviews Environmental Health 18: 65-73.
  2. Araújo, A.P., Plassard, C., Drevon J.J. (2008). Phosphatase and phytase activities in nodules of common bean genotypes at different levels of phosphorus supply. Plant and Soil. 312: 129-138.
  3. Bargaz, A.; Zaman-Allah, M.; Farissi, M.; Lazali, M.; Drevon, J.J.; Maougal, R.T.; Carlsson G. (2015). Physiological and molecular aspects of tolerance to environmental constraints in grain and forage legumes. International Journal of Molecular Sciences. 16: 18976-19008.
  4. Belimov, A.A., Safronova, V.I., Sergeyeva, T.A., Egorova, T.N., Matveyeva, V.A., Tsyganov, V.E., Borisov, A.Y., Tikhonovich, I.A., Kluge, C., Preisfeld, A., Dietz, K. J. Stepanok, V.V., (2001). Characterisation of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology. 47: 642–652.
  5. Cregut, M., Piutti, S., Vong, P.C., Slezack-Deschaumes, S., Crovisier, I., Benizri, E. (2009). Density, structure and diversity of the cultivable arylsulfatase-producing bacterial community in the rhizosphere of field grown rape and barley. Soil Biology and Biochemistry. 41(4): 704–10.
  6. da Rocha, U.N., van Overbeek, L., van Elsas, J.D. (2009). Exploration of hitherto uncultured bacteria from the rhizosphere. FEMS Microbiol Ecol. 69: 313–328.
  7. Drevon, J.J., Alkama, N., Araujo, A.P., Beebe, M., Blair, M., Attar, H., et al. (2011). Nodular diagnosis for ecological engineering of the symbiotic nitrogen fixation with legumes. Proceedings of Environmental Sciences. 9: 40-46.
  8. Drevon, J.J., Abadie, J., Alkama, N. andriamananjara, A., Amenc, L., Bargaz, A., Carlsson, G., Lazali, M., Ghoulam, C., Ounane, S.M. (2015). Phosphorus use efficiency for N2 fixation in the rhizobial symbiosis with legumes, in: F.J. de Bruijn (eds.), Biological Nitrogen Fixation, Wiley, Sons, Inc., p. 455-464.
  9. Fatima, F., Pathak, N., Rastogi Verma, S. (2014). An improved method for soil DNA extraction to study the microbial assortment within rhizospheric region. Molecular Biology International. 2014: 518960.
  10. Gaumont-Guay, D., Black, T.A., Barr, A.G., Jassal, R.S. Nesic, Z. (2008). Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand. Tree Physiology. 28: 161-171.
  11. Girme, M.S. and Sarnoba, D.H. (2018). Effect of nutrient supply system on biometry and rhizosphere microflora of soybean, pigeon pea and sorghum. Agricultural Science Digest. 38: 22-26.
  12. Graham, P.H., Vance, C.P. (2003). Legumes: Importance and constraints to greater use. Plant Physiology. 3: 872–877.
  13. Hartmann, A. Rothballer, M., Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil. 312(1-2): p. 7.
  14. Hinsinger, P, Betencourt, E., Bernard, L., Brauman, A., Plassard, C., Shen, J., Tang, X., Zhang, F. (2011). P for two, sharing a Scarce Resource: Soil Phosphorus Acquisition in the Rhizosphere of Intercropped Species. Plant Physiology. 156: 1078-1086.
  15. Jorquera, M.A, Hernández, M.T., Rengel, Z., Marschne, P., Mora, M.L. (2008). Isolation of culturable phosphobacteria with both phytate-mineralization and phosphatesolubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils. 44: 1025-1034. 
  16. Lazali, M., Zaman-Allah, M., Amenc, L., Ounane, G., Abadie, J., Drevon, J.J., (2013). A phytase gene is over-expressed in root nodules cortex of Phaseolus vulgaris - rhizobia symbiosis under phosphorus deficiency. Planta. 238: 317-324.
  17. Li, J., Hegeman, C.E., Hanlon, R.W., Lacy, G.H., Denbow, D.M., Grabau, E.A. (1997). Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiolology. 114: 1103-1111. 
  18. Lim, B.L., Yeung, P., Cheng, C., Hill, J.E. (2007). Distribution and diversity of phytatemineralizing bacteria. ISME Journal. 1: 321-330
  19. López-Gutiérrez, J.C., Henry, S., Hallet, S., Martin-Laurent, F., Catroux, G., Philippot, L. (2004). Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. Journal of microbiology Methods. 57: 399-407.
  20. Maougal, R.T., Brauman, A., Plassard, C., Abadie, J., Djekoun, A., Drevon, J.J. (2014a). Bacterial capacities to mineralize phytate increase in the rhizosphere of nodulated common bean (Phaseolus vulgaris) under P deficiency. European Journal of Soil Biology. 62: 8-14.
  21. Maougal, R.T., Bargaz, A., Sahel, C., Amenc, L., Djekoun, A., Plassard, C., Drevon, J.J. (2014b). Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate. Planta. 239: 901-908.
  22. Mendes, R., Garbeva, P., Raaijmakers, JM. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiology Reviews. 37: 634-663.
  23. Mougel, C., Offre, P., Ranjard, L., Corberand, T., Gamalero, E., Robin, C., Lemanceau, P. (2006). Dynamic of the genetic structure of bacterial and fungal communities at different development stages of Medicago truncatula Jemalong J5. New Phytologist. 170:165-175.
  24. Plassart, P., Terrat, S., Thomson, B., Griffiths, R., Dequiedt, S., Lelievre, M., Regnier, T.,Nowak ,V., Bailey, M., Lemanceau, P., Bispo. A., Chabbi, A., Maron, P.A., Mougel, C., Ranjard, L. Philippe Lemanceau. (2012). Evaluation of the ISO Standard 11063 DNA Extraction Procedure for Assessing Soil Microbial Abundance and Community Structure. PLoS ONE. 7(9): e44279. doi:10.1371/journal.pone. 0044279
  25. Richardson, A.E. Hadobas P.A. (1997). Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Canadian Journal of Microbiology. 43: 509-516.
  26. Ros, M., Pascual, J.A., Garcia, C., Hernandez, M.T., Insam, H. (2006). Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biology and Biochemistry. 38: 3443–3452.
  27. Rotaru, V. Sinclair, T.R. (2009). Interactive influence of phosphorus and iron on nitrogen fixation by soybean. Environmental and Experimental Botany. 66: 94-99
  28. Rovira, A.D. (1965). Interactions between plant roots and soil micro- -organisms. Annual Review of Microbiology. 19: 241-266.
  29. Sadzawka, A., Carrasco, M. A., Grez, R., Mora, M. L., Flores, H., Neaman, A. (2006). Recommended methods of analysis for soils in Chile. (In Spanish.) Serie de Actas INIA no. 34. Santiago, Chile: Instituto de Investigaciones Agropecuarias.
  30. Schulze, J., Drevon, J.J. (2005). P-deficiency increases the O2 uptake per N2 reduced in alfalfa. Journal of Experimental Botany. 56: 1779-1784.
  31. Smalla, G., Wieland, A., Buchner, A., Zock, J., Parzy, S., Kaiser, N., Roskot, H., Heuer, Berg. G. (2001). Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-dependent Enrichment and Seasonal Shifts Revealed. Applied and Environmental Microbiology. 4742–4751.
  32. Sørensen, J. (1997). The rhizosphere as a habitat for soil microorganisms. In Modern Soil Microbiology. [Eds. J D van Elsas, J T Trevors and E M H] Wellington. Marcel Dekker, New York. pp 21–45.
  33. Subhashini, D.V. (2013). Isolation of rhizospheric bacteria and their effect on germination of tobacco seed and growth of seedlings. Agricultural Science Digest. 33(2): 127-130.
  34. Sun, K., Liu, J., Gao, Y., Jin, L., Gu, Y., Wang. W. (2015). Isolation, plant colonization potential and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Scientific reports 4: 5462. 
  35. Thakur, D., Kaushal, R., Shyam, V. (2015). Phosphate solubilising microorganisms: role in phosphorus nutrition of crop plants- a review. Agricultural Reviews. 35:159-171.
  36. Vadez, V., Drevon, J.J. (2001). Genotypic variability in phosphorus use efficiency for symbiotic N2 fixation in common bean (Phaseolus vulgaris). Agronomie, EDP Sciences. 21(67): 691-699.
  37. Watt, M., Kirkegaard, J.A., Passioura, J.P. (2006). Rhizosphere biology and crop productivity. Australian Journal of Soil Research. 44(4): 299-317.
  38. Xu, H., Biswas, D.K., Li, W.D., Chen, S.B., Zhang, S.B. Jiang, G.M., Li, Y.G. (2007). Photosynthesis and yield responses of ozone-polluted winter wheat to drought. Photosynthetica. 45: 582-588.

Editorial Board

View all (0)