Determination of the Polymorphism of the Booroola Fecundity B, Callipyge and Calpastatin Genes in Assaf Sheep Breed by PCR-RFLP Method

DOI: 10.18805/ag.D-228    | Article Id: D-228 | Page : 102-107
Citation :- Determination of the Polymorphism of the Booroola Fecundity B, Callipyge and Calpastatin Genes in Assaf Sheep Breed by PCR-RFLP Method.Agricultural Science Digest.2021.(41):102-107
Omar M. Darissa, Raeda Irekat odarissa@bethlehem.edu
Address : UNESCO Biotechnology Educational and Research Center (UNESCO BERCEN). Bethlehem University, P.O. Box 9, Bethlehem, Palestine.
Submitted Date : 6-01-2020
Accepted Date : 1-10-2020


Background: The development of local sheep breeds that have high fecundity levels, high meat content and high growth rates would help satisfy the Palestinian demand of meat and lower its price. It has been reported that mutant alleles of the genes Booroola fecundity (FecB), Callipyge (CLPG) and calpastatin (CAST) are associated with high litter size, larger muscular rumps and higher tenderness of meat after sheep slaughter, respectively. PCR-RFLPs methods have been established to facilitate the survey of sheep breeds for such mutants.
Methods: In this study, 117 blood samples of the most common sheep breed in Palestine, Assaf, were collected from Bethlehem and Jenin districts. Genomic DNA was extracted and purified from the blood samples using the salting out method. The genotypic ratios and allelic frequencies of the FecB, CLPG and CAST genes were determined by PCR-RFLP method.  
Result: The results show that the mutant allele B of the FecB gene has a very low frequency among the screened sheep with 0.01 in Bethlehem and 0.07 in Jenin. Also, 94.4% of the tested sheep have the wildtype genotype AA for the CLPG gene with a frequency of 0.95 for allel A. Moreover, the desired heterzygous genotype MN for the CAST gene is 38.4% with an allelic frequency of 0.81 for the mutant allel M. These results would assist establishing sheep breeding programs with the appropriate parental genotypes to improve the livestock sector in the country. 


Assaf Booroola Callipyge Calpastatin Fecundity


  1. Alakilli, S. (2015). Analysis of Polymorphism of Calpastatin and Callipyge Genes in Saudi Sheep Breeds Using PCR-RFLP Technique. International Journal of Pharmaceutical Sciences Review and Research. 30(1): 340-344.
  2. Al-Barzinji, Y.M. and Othman G.U. (2013). Genetic polymorphism in FecB gene in Iraqi Sheep Breeds using RFLP-PCR technique. IOSR Journal of Agriculture and Veterinary Science. 2(4): 46-48.
  3. Bradford, G.E., Quirke, J.F., Sitorius, P., Inounu, I., Tiesnamurti, B., Bell, F. L., Fletcher, I.C. and Torell, D.T. (1986). Reproduction in Javanese sheep: Evidence for a gene with large effect on ovulation rate and litter size. Journal of Animal Science. 63(2): 418-431. doi:10.2527/jas1986.632418x.
  4. Byun, S.O., Zhou, H., Forrest, R.H., Frampton, C.M. and Hickford, J.G. (2008). Association of the ovine calpastatin gene with birth weight and growth rate to weaning. Animal Genetics. 39: 572-573.
  5. Chu, M.X., Liu, Z.H., Jiao, C.L., He, Y.Q., Fang, L., Ye, S.C., Chen, G.H. and Wang, J.Y. (2007). Mutations in BMPR-IB and BMP-15 genes are associated with litter size in Small Tailed Han sheep (Ovis aries). Journal of Animal Science. 85 (3): 598-603. doi:10.2527/jas.2006-324 85: 324-330
  6. Cockett, N.E., Jackson, S.P., Shay, T.L., Farnir, F., Berghmans, S., Snowder, G.D., Nielsen, D.M. and Georges, M. (1996). Polar overdominance at the ovine callipyge locus. Science. 273: 236.
  7. Davis, G.H., Balakrishnan, L., Ross, I.K., Wilson, T., Galloway, M., Lumsden, B.M., Hanrahan, J.P., Mullen, M., Mao, X.Z., Wang, G.L., Zhao, Z.S., Zeng, Y.Q., Robinson, J.J., Mavrogenis, A.P., Papachristoforou, C., Peter, C., Baumung, R., Cardyn, P., Boujenane, I., Cockett, N.E., Eythorsdottir, E., Arranz, J.J. and Notter, D.R. (2006). Investigation of the Booroola (FecB) and Inverdale (FecXI) mutations in 21 prolific breeds and strains of sheep sampled in 13 countries. Animal Reproduction Science. 92(1-2): 87-96. doi:10.1016/j.anireprosci.2005.06.001.
  8. Davis, G.H., Galloway, S.M., Ross, I.K., Gregan, S.M., Ward, J., Nimbkar, B.V., Ghalsasi, P.M., Nimbkar, C., Gray, G.D., Subandriyo, Inounu, I., Tiesnamurti, B., Martyniuk, E., Eythorsdottir, E., Mulsant, P., Lecerf, F., Hanrahan, J.P., Bradford, G.E. and Wilson, T. (2002). DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola (FecB) mutation. Biology of Reproduction. 66: 1869-1874.
  9. Davis, G.H., Montgomery, G.W., Allison, A.J., Kelly, R.W. and Bray, A.R. (1982). Segregation of a major gene influencing fecundity in progeny of Booroola sheep. New Zealand Journal of Agricultural Research. 25(4): 525-529. doi:10. 1080/00288233.1982.10425216.
  10. EL-Hanafy, A.A. and El-Saadani, M.A. (2009). Fingerprinting of FecB gene in five Egyptian sheep breeds. Biotechnology in Animal Husbandry. 25(3-4): 205-212.
  11. Food and agriculture organization of the United Nations (2018). Final Evaluation of the Institutional Level Component of the Project “Support for Livestock-based Livelihoods of Vulnerable Populations in the Occupied Palestinian Territory” [online]. Website www.fao.org/3/I9359EN/i9359en.pdf [accessed 5 October 2019].
  12. Freking, B.A., Keele, J.W., Beattie, C.W., Kappes, S.M., Smith, T.P.L., Sonstegard, T.S., Nielsen, M.K. and Leymaster, K.A. (1998). Evaluation of the ovine callipyge locus: I. Relative chromosomal position and gene action. Journal of Animal Science. 76 (8): 2062-2071. doi:10.2527/1998. 7682062x.
  13. Gábor, M., Trakovická, A. and Miluchová, M. (2009). Analysis of polymorphism of CAST gene and Clpg gene in sheep by PCR-RFLP method. Lucrãri ºtiintifice Zootehnie ºi Biotehnologii. 42: 470-476.
  14. Gootwine, E. (2008). Biological and economic consequences of introgressing the B allele of the FecB (Booroola) gene into Awassi and Assaf sheep. In: Proceeding of the Helen Newton Turner Memorial International Workshop; Pune, India, pp. 119-127.
  15. Gootwine, E., Reicher, S. and Rozov, A. (2008). Prolificacy and lamb survival at birth in Awassi and Assaf sheep carrying the FecB (Booroola) mutation. Animal Reproduction Science. 108(3-4): 402-411. doi: 10.1016/j.anireprosci. 2007.09.009.
  16. Guan, F., Liu, S.R., Shi, G.Q., Ai, J.T., Mao, D.G. and Yang, L.G. (2006). Polymorphism of FecB gene in nine sheep breeds or strains and its effects on litter size, lamb growth and development. Acta Genetica Sinica. 33(2): 117-124. doi:10.1016/s0379-4172(06)60030-9.
  17. Jamshidi, R., Kasirian, M.M. and Rahimi, G.A. (2013). Application of PCR-RFLP technique to determine Booroola gene polymorphism in the Sangsari sheep breed of Iran. Turkish Journal of Veterinary and Animal Sciences. 37: 129-133. doi:10.3906/vet-0806-14.
  18. Jawasreh, K., Jadallah, R., Al-Amareen, A.H., Abdellah, A., Al-Qaisi, A., AlRawashdeh, I.M., Borhan, M., AL-Zghoul, F., KHAIR, M., Ahamed, A. and Obeidat, B. (2017). Association between MspI calpastatin gene polymorphisms, growth performance and meat characteristics of Awassi sheep. The Indian journal of animal sciences. 87 (5): 635-639.
  19. Jia, C.L., Li, N., Zhao, X.B., Zhu, X.P. and Jia, Z.H. (2005). Association of single nucleotide polymorphisms in exon 6 region of BMPRIB gene with litter size traits in sheep. Asian-Australasian Journal of Animal Sciences. 18(10): 1375-1378.
  20. Jonmundsson, J.V. and Adalsteinsson, S. (1985). Single genes for fecundity in Icelandic sheep. In: Land, R.B., Robinson, D.W. (editors). Genetics of Reproduction in Sheep. Butterworths, London, pp. 159-168.
  21. Martyniuk, E. and Radomsa, M.J. (1991). A single gene for prolificacy in Olkuska sheep. In: Elsen J.M., Bodin, L., Thimonier, J. (editors). Major Genes for Reproduction in Sheep. Paris, Inra, Pp. 85-92.
  22. Miller, S.A., Dykes, D.D. and Polesky, H.F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research. 16 (3): 1215. doi:10.1093/    nar/16.3.1215.
  23. Notter, D.R. (2012). Genetic improvement of reproductive efficiency of sheep and goats. Animal Reproduction Science. 130 (3-4):147-151. doi:10.1016/j.anireprosci.2012.01.008. 
  24. Palestinian Central Bureau of Statistics (2014). Livestock Survey (2013). Main Results. Ramallah, Palestine [online]. Website http://www.pcbs.gov.ps/PCBS-Metadata-en-v4.3/index.php/catalog/331 [accessed 5 October 2019].
  25. Palmer, B.R., Robert, N., Hickford, J.G.H. and Bickerstaffe, G. (1998). Rapid Communication: PCR-RFLP for MspI and NcoI in the ovine calpastatin gene. Journal of Animal Science. 76(5): 1499-500. doi:10.2527/1998.7651499x.
  26. Piper, L.R., Bindon, B.M. and Davis, G.H., (1985). The single gene inheritance of the high litter size of the Booroola Merino. In: Land, R.B., Robinson, D.W. (Eds.), Genetics of Reproduction in Sheep. Butterworths, London, UK, 115-125.
  27. Roy, J., Polley, S., De, S., Mukherjee, A., Batabyal, S., Pan, S., Brahma, B., Datta, T.K. and Goswami, S.L. (2011). Polymorphism of Fecundity Genes (FecB, FecX and FecG) in the Indian Bonpala Sheep. Animal Biotechnology. 22 (3): 151-162. doi:10.1080/10495398.2011.589239.
  28. Shi, H., Bai, J., Niu, Z., Muniresha, Fen L. and Jia, B. (2010). Study on candidate gene for fecundity traits in Xingjiang Cele black sheep. African Journal of Biotechnology. 9 (49): 8498-8505. doi: 10.5897/AJB10.1003.
  29. Smit, M., Segers, K., Carrascosa, L.G., Shay, T., Baraldi, F., Gyapay, G., Snowder, G., Georges, M., Cocket, N. and Charlier, C. (2003). Mosaicism of Solid Gold supports the causality of a non-coding A-to-G transition in the determinism of the callipyge phenotype. Genetics. 163(1): 453-456. 
  30. Sutikno, A., Yamin, M. and Sumantric, C. (2011). Association of Polymorphisms Calpastatin Gene with Body Weight of Local Sheep in Jonggol, Indonesia. Media Peternakan. 34 (1): 1-6. 
  31. Yu, H., Waddell, J.N., Kuang, S., Tellam, R.L., Cockett, N.E. and Bidwell, C.A. (2018). Identification of genes directly responding to DLK1 signaling in Callipyge sheep. BMC Genomics. 19(1): 283. doi:10.1186/s12864-018-4682-1.

Global Footprints