Banner

Chief Editor:
Arvind kumar
Rani Lakshmi Bai Central Agricultural Uni., Jhansi, U.P., INDIA
Frequency:Bi-monthly
Indexing:
BIOSIS Preview, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossR...
Agricultural Science Digest, volume 30 issue 3 (september 2010) : 192 - 196

ALLELOPATHIC POTENTIAL OF LUDWIGIA ADSCENDENS (L.) ON GERMINATION AND SEEDLING GROWTH OF GREENGRAM, VIGNA RADIATA (L.) CULTIVATED AFTER RICE

N. Roy, A. Barik*
1Ecology Research Unit, Department of Zoology University of Burdwan, Burdwan-713104, India
  • Submitted|

  • First Online |

  • doi

Cite article:- Roy N., Barik* A. (2025). ALLELOPATHIC POTENTIAL OF LUDWIGIA ADSCENDENS (L.) ON GERMINATION AND SEEDLING GROWTH OF GREENGRAM, VIGNA RADIATA (L.) CULTIVATED AFTER RICE. Agricultural Science Digest. 30(3): 192 - 196. doi: .
Allelopathic potential of the rice field weed, water primrose Ludwigia adscendens (L.) leaf,
stem and leaf+stem on germination, root and shoot length, seedling vigour and vigour index of
the greengram [Vigna radiate (L.), cv.KB-54], was investigated in the laboratory. The different
concentrations (e.g. 5, 10, 20, 40, 60, 80 and 100%) of the aqueous extract of leaf stem and
leaf+stem of the weed parts were applied separately on greengram seeds in petri dishes lined
with filter paper. The per cent of germination decreased from 4–32%, 2-23% and 7–36%, and
root length and shoot length of the greengram also decreased from 0.01-2.04 cm, 0.02-1.96 cm
and 0.07-2.08, and 0.818-1.575 cm, 0.785-1.567 and 0.83-1.64 cm for increased concentrations
of the weed leaf, stem and leaf+stem extracts over control, respectively. The seedling vigour
and vigour index of the greengram were decreased considerably from 13.32-237.6, 8.14-221.9
and 28.14-244.36, and 85.68-166.62, 80.65-164.44 and 90.21-171.92 with increased
concentrations of different parts of aqueous extract of the weed over control, respectively
  1. Ashrafi, Z.Y. et al., (2008). J. Agric. Technol. 4(1): 219-229.
  2. Batish, D.R. et al., (2002). J. Agron. Crop Sci. 188: 19-24.
  3. Batlang, U and Shushu, D.D. (2007) J. Agron. 6 : 541-547.
  4. Bogatek, R. et al., (2006). Biol. Planta., 50 (1): 156-158.
  5. Chon, S. U. and Kim, J. D. (2000). J. Agron. Crop Sci. 188: 281-285.
  6. Economou, G. et al., (2002). Ecol. 17: 2021-2034.
  7. Inderjit, K. L. and Dakshini, K. M. M. (1995). Bot. Rev. 61: 28–44.
  8. Inderjit, K. L. and Duke, K. I. (2003). Planta 271: 529-539.
  9. Inderjit, K. L. and Keating, K. I. (1999). Adv. Agron. 67: 141-231.
  10. Isfahan, M. N. and Shariati, M. (2007). American-Eurasian J. Agric. & Environ. Sci. 2 (5): 534-538.
  11. Narwal, S. S. (1994). Allelopathy in Crop Production. Scientific Publishers, Jodhpur, India.
  12. Nawalesh, K. S. and Samar, J.S. (2004). Indian J. Plant Physiol. 9(3): 313-315.
  13. Nayek, T. K. and Banerjee, T. C. (1987). Entomophaga 32: 407-414.
  14. Wagu, A. and Ugborogho, R. E. (2000). Seed Sci. Technol. 28: 657-697.
  15. Young, G. P. and Bush, J. K. (2009). J. Chem. Ecol. 35: 74–80.

Editorial Board

View all (0)